European Journal of Chemistry 2010, 1(3), 162-167. doi:https://doi.org/10.5155/eurjchem.1.3.162-167.23

On the Structure of Liquid Methyl Salicylate: the Role of Intramolecular Hydrogen Bonding


Santiago Aparicio (1,*) , Rafael Alcalde (2)

(1) Department of Chemistry, University of Burgos, 09001 Burgos, Spain
(2) Department of Chemistry, University of Burgos, 09001 Burgos, Spain
(*) Corresponding Author

Received: 31 Mar 2010, Accepted: 22 Jun 2010, Published: 29 Sep 2010

Abstract


A study on the structure of methyl salicylate is reported using quantum mechanical calculations, molecular dynamics simulations, vibrational spectroscopy and microwave dielectric relaxation spectroscopy tools. The reported results show that a strong intramolecular hydrogen bonding is developed between the hydroxyl hydrogen and carbonyl oxygen. This intramolecular interaction is maintained in gas and liquid phases and even when diluted in inert solvents. Interaction between neighbour molecules is developed through dipolar interactions, and thus, intermolecular hydrogen bonding should be discarded for pure liquid methyl salicylate. The interaction between neighbour methyl salicylate molecules do not lead to remarkable changes in the intramolecular hydrogen bonding.

1_3_162_167_800


Keywords


Salicylate; Hydrogen bonding; DFT-Molecular dynamics; Vibrational spectroscopy; Relaxation spectroscopy

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.1.3.162-167.23

Article Metrics


This Abstract was viewed 1795 times | PDF Article downloaded 288 times

Citations

/


[1]. Greg P. Maier, Christopher M. Bernt, Alison Butler
Catechol oxidation: considerations in the design of wet adhesive materials
Biomaterials Science  6(2), 332, 2018
DOI: 10.1039/C7BM00884H
/


[2]. A. Manimekalai, R. Balachander
Theoretical investigation of the conformation and hydrogen bonding ability of 5-arylazosalicylaldoximes
Journal of Molecular Structure  1027, 175, 2012
DOI: 10.1016/j.molstruc.2012.06.012
/


References

[1]. Aparicio, S.; Alcalde, R.; Dávila, M. J.; García, B.; Leal, J. M. J. Phys. Chem. B 2007, 111, 4417-4431.
doi:10.1021/jp068560t
PMid:17411084

[2]. Aparicio, S.; Alcalde, R. Green Chem. 2009, 11, 65-78.
doi:10.1039/b811909k

[3]. Yamada, H. Bull. Chem. Soc. Jpn. 1959, 32, 1051-1056.
doi:10.1246/bcsj.32.1051

[4]. Wojcik, M.J.; Paluszkiewicz, C. Can. J. Chem. 1983, 61, 1449-1452.
doi:10.1139/v83-253

[5]. Berthelot, M.; Laurence, C.; Lucon, M.; Rossignol, C. J. Phys. Org. Chem. 1996, 9, 626-630.
doi:10.1002/(SICI)1099-1395(199609)9:9<626::AID-POC828>3.0.CO;2-M

[6]. Mitsuzuka, A.; Fujii, A.; Ebata, T.; Mikami, N. J. Phys. Chem. A 1998, 102, 9779-9784.
doi:10.1021/jp9830934

[7]. Palomar, J.; De Paz, J. L. G.; Catalám, J. Chem. Phys. 1999, 246, 167-208.
doi:10.1016/S0301-0104(99)00159-7

[8]. Melandri, S.; Giuliano, B. M.; Maris, A.; Favero, L. B.; Ottaviani, P.; Velino, B.; Caminati, W. J. Phys. Chem. A. 2007, 111, 9076-9079.
doi:10.1021/jp0723970
PMid:17722889

[9]. Massaro, R. D.; Dai, Y.; Blaistein-Barojas, E. J. Phys. Chem. A 2009, 113, 10385-10390.
doi:10.1021/jp905887m
PMid:19708681

[10]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K.N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H. P.; Cross, J.B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.;Rabuck,A.D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03 (Revision C.02), Gaussian, Inc., Wallingford CT, 2004.

[11]. Becke, A.D. Phys. Rev. A 1988, 38, 3098-3100.
doi:10.1103/PhysRevA.38.3098
PMid:9900728

[12]. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
doi:10.1103/PhysRevB.37.785

[13]. Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.

[14]. Bader, R.F.W. Atoms in Molecules: a Quantum Theory, Oxford University Press, Oxford, 1990.

[15]. Biegler-König, F.; Schönbohm, J.; Bayles, D. J. Comput. Chem. 2001, 22, 545-559.
doi:10.1002/1096-987X(20010415)22:5<545::AID-JCC1027>3.0.CO;2-Y

[16]. Ponder, J. W. Tinker: Software tool for molecular design. 4.2 ed, Washington University School of Medicine, 2004.

[17]. Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. J. Am. Chem. Soc. 1996, 118, 11225-11236.
doi:10.1021/ja9621760

[18]. Aparicio, S.; Alcalde, R.; García, B.; Leal, J. M. Chem. Phys. Lett. 2007, 444, 252-257.
doi:10.1016/j.cplett.2007.07.033

[19]. Koch, U.; Popelier, P. L. A. J. Phys. Chem. 1995, 99, 9747-9754.
doi:10.1021/j100024a016

[20]. Popelier, P. L. A. J. Phys. Chem. A 1998, 102, 1873-1878.
doi:10.1021/jp9805048

[21]. Hibbs, D.E.; Overgaard, J.; Piltz, R.O. Org. Biomol. Chem. 2003, 1, 1191-1198.
doi:10.1039/b211683a

[22]. Espinosa, E.; Lecomte, C.; Molins, E. Chem. Phys. Lett. 1999, 300, 745-748.
doi:10.1016/S0009-2614(98)01399-2

[23]. Espinosa, E.; Molins, E.; Lecomte, C. Chem. Phys. Lett. 1998, 285, 170-173.
doi:10.1016/S0009-2614(98)00036-0

[24]. Varghese, H. T.; Panicker, C. Y.; Mannekutla, J. R.; Inamdar, S. R. Spectrochim. Acta A 2007, 66, 959-963.
doi:10.1016/j.saa.2006.04.034
PMid:16872885


How to cite


Aparicio, S.; Alcalde, R. Eur. J. Chem. 2010, 1(3), 162-167. doi:https://doi.org/10.5155/eurjchem.1.3.162-167.23
Aparicio, S.; Alcalde, R. Eur. J. Chem. On the Structure of Liquid Methyl Salicylate: the Role of Intramolecular Hydrogen Bonding. 2010, 1(3), 162-167. doi:https://doi.org/10.5155/eurjchem.1.3.162-167.23
Aparicio, S., & Alcalde, R. (2010). On the Structure of Liquid Methyl Salicylate: the Role of Intramolecular Hydrogen Bonding. European Journal of Chemistry, 1(3), 162-167. doi:https://doi.org/10.5155/eurjchem.1.3.162-167.23
Aparicio, Santiago, & Rafael Alcalde. "On the Structure of Liquid Methyl Salicylate: the Role of Intramolecular Hydrogen Bonding." European Journal of Chemistry [Online], 1.3 (2010): 162-167. Web. 18 Jun. 2018
Aparicio, Santiago, AND Alcalde, Rafael. "On the Structure of Liquid Methyl Salicylate: the Role of Intramolecular Hydrogen Bonding" European Journal of Chemistry [Online], Volume 1 Number 3 (29 September 2010)

DOI: https://doi.org/10.5155/eurjchem.1.3.162-167.23

Refbacks

  • There are currently no refbacks.




Copyright (c)




© Copyright 2018  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2018 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registred in USA.