Composition and properties of tectosilicate-uranium layers of soil

Cecilio Duarte Alaniz, Eduardo Ordonez Regil, Guillermo Jesus Cruz Cruz, Jesus Ramirez Torres, Jose Lopez Monroy


Structure and superficial properties of tectosilicates found in soils with potential to retain uranium are studied in this work. These tectosilicates are largely available as natural minerals in the soil and are composed mainly by anorthite (CaAl2Si2O8), albite (NaAlSi3O8) and orthoclase (KAlSi3O8), in which albite has approximately 3 times the content of orthoclase and 2.5 times the content of anorthite. However, anorthite has a double cell structure, which could result in approximately the same sorption effect as albite. The acidity constants calculated with the surface complexation model suggested that the three components have similar amphoteric behavior in presence of high ionic strength ground salt solutions. The composite mineral has a specific surface area of 20.5 m2g-1 with site density of 2.8 sites nm-2. These characteristics make this mineral a good candidate for uranium capture.



Albite; Anorthite; Orthoclase; Surface area; Acidity constants; Potentiometric titrations

European Journal of Chemistry, 3 (1), (2012), 32-36

Full Text:

PDF    /    /


Cited by

[1]. Oľga Rosskopfová’s, Lucia Pivarčiová’s, Adrián Krajňák’s, Michal Galamboš’s, Pavol Rajec’s
Adsorption of nickel on illite/smectite Dolná Ves
Journal of Radioanalytical and Nuclear Chemistry  307(1), 179, 2016
DOI: 10.1007/s10967-015-4110-9

[2]. Agnieszka Gładysz-Płaska, Ewelina Grabias, Marek Majdan
Simultaneous adsorption of uranium(VI) and phosphate on red clay
Progress in Nuclear Energy  , , 2017
DOI: 10.1016/j.pnucene.2017.09.010

[3]. A. Krajňák, L. Pivarčiová, O. Rosskopfová, M. Galamboš, P. Rajec
Adsorption of nickel on rhyolitic Slovak bentonites
Journal of Radioanalytical and Nuclear Chemistry  304(2), 587, 2015
DOI: 10.1007/s10967-014-3832-4


[1]. Kratz, S.; Schnug E.; Markel B. J.; Hasche-Berger A. (Eds.), Rock phosphates and P fertilizers as sources of U contamination in agricultural soils, Springer, Berlin, Heidelberg, 2006, pp. 57-68.

[2]. Guzman, R. E. T.; Regil, O. E.; Alberich, E. M. V.; Hernandez, R. A.; Gutierrez, R. L. R.; Regil, O. E. Water, Air, Soil Pollut. 2006, 175, 77-98.

[3]. Guzman, R. E. T.; Alberich, E. M. V.; Regil, O. E. J. Radioanal. Nucl. Chem. 2002, 254(3), 509-517.

[4]. DeMasily, G. Radiochim. Acta 1998, 44-45, 159-164.

[5]. Grenthe, I. Radiochim. Acta 1991, 52-53, 425-432.

[6]. Jaquier, P. Radiochim. Acta 1991, 52-53, 495-500.

[7]. Dozol, M.; Hagemann, R. Pure App. Chem. 1993, 65(5), 1081-1102.

[8]. Guillaumont, R. Radiochim. Acta 1994, 66-67, 231-237.

[9]. Day, D. H.; Hughes, A. E.; Leake, J. W.; Marples, J. A.; Marsh, G. P.; Rae, J.; Wade, B. O. Rep. Prog. Phys. 1985, 48, 1091-1154.

[10]. Hueckel, T.; Peano, A. Comput. Geotech. 1987, 3(2-3), 157-182.

[11]. Abdelouahed, H. B.; Reguigui, N. J. Radioanal. Nucl. Chem. 2011, 289, 103-111.

[12]. Guzman, R. E. T.; Rios, S. M.; Garcia, I. J. L.; Regil, O. E. J. Radioanal. Nucl. Chem. 1995, 189(2), 301-305.

[13]. Souka, N.; Shabana, R.; Farah, K. J. Radional. Nucl. Chem. 1976, 33, 15-23.

[14]. Yinjie, S.; Hui, Z.; Qiaoling, Y.; Aimin, Z. J. Radioanal. Nucl. Chem. Art. 1995, 198(2), 375-387.

[15]. Lomenech, C.; Drot, R.; Simoni, E. Radiochim. Acta 2003, 91, 453-461.

[16]. Regil, O. E.; Drot, R.; Simoni, E. J. Colloid. Interface Sci. 2003, 263, 391-398.

[17]. Galambos, M.; Rosskopfova, O.; Kufcakova, J.; Rajec, P. L. J. Radioanal. Nucl. Chem. 2011, 288, 765-777.

[18]. Garcia, G.; Ordoñez, E.; Drot, R.; Perez, M. Inf. Tecnol. 2004, 15(4), 31-38.

[19]. Zhang, Y.; Zhao, H.; Fan, Q.; Zheng, X.; Li, P.; Liu, S.; Wu, W. J. Radioanal. Nucl. Chem. 2011, 288, 395-404.

[20]. Drot, R.; Lindecker, C.; Fourest, B.; Simoni, E.; New J. Chem. 1998, 1, 1105-1109.

[21]. Hayes, K. F.; Redden, G.; Ela, W.; Leckie, J. O. J. Colloid. Interface Sci. 1991, 142(2), 448-469.

[22]. Noh, J.; Schwarz, J. J. J. Colloid. Interface. Sci. 1989, 130, 157-164.

[23]. Herbelin, A.; Westall, J., FITEQL4 V 4.0 program; Report 96-01. Department of Chemistry, Oregon State University, Corvallis, 1996.

[24]. Preocanin, T.; Kallay, N. Croat. Chem. Acta 1998, 71(4), 1117-1125.

[25]. Available at: by Marczewski, A. W. Last update on: 01/04/2012.

[26]. Cerius Database, Biosym/Molecular Simulations. USA, 1995.

[27]. Hodgson, M. E. J. Geochem. Explor. 2006, 88, 288-303.

[28]. Armbruster, T.; Bürgi, H. B.; Kunz, M.; Gnos, E.; Bröniman, S.; Lienert, C. Am. Mineral. 1990, 75, 135-140.

[29]. Harlow, G.; Brown, G. E. Jr. Am. Mineral. 1980, 65, 986-995.

[30]. Murakami, T.; Kogure, T.; Kadohara, H.; Ohniki, T. Am. Mineral. 1998, 83, 1209-1219.

[31]. Simoni, E., Encyclopedia of surface and colloid science, Marcel Dekker Inc. 2002.

[32]. Appelo, C. A. J.; Postma, D. Geochim. Cosmochim. Acta 1999, 63(19-20), 3039-3048.


  • There are currently no refbacks.