European Journal of Chemistry 2012, 3(3), 348-355 | doi: https://doi.org/10.5155/eurjchem.3.3.348-355.638 | Get rights and content






  OPEN ACCESS | PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Theoretical density functional study of gas-phase tautomerization and acidity of 5-methylhydantoin and its thio derivatives


Zaki Sulieman Safi (1,*)

(1) Department of Chemistry, Faculty of Science, Al Azhar University-Gaza, 1277, Gaza, Palestine
(*) Corresponding Author

Received: 22 May 2012 | Accepted: 21 Jul 2012 | Published: 30 Sep 2012 | Issue Date: September 2012

Abstract


Tautomerization and acidities of various 5-methylhydantoins and their thio derivatives were predicted using Density Functional Theory (DFT). The functional used was B3LYP and the basis set for all atoms was 6-311+(d,p). Single point energy computations were performed at the 6-311+G(2df,2p) basis set. The relative stabilities of the different tautomers of the 2,4-dioxo, 2-thio-4-oxo, 4-thio-2-oxo and 2,4-dithio derivatives of the deprotonated 5-methylhydantoin have been studied. In all cases, the most stable deprotonated conformers are the oxo-thione, the dioxo or the dithio. As for the neutral and the protonated 5-methylhydantoin-thio derivatives, the tautomerization activation barriers are high enough as to conclude that the oxo-thione structures should be found in the gas phase. It was revealed that the ring-nitrogen atom at position 3 (N3) is more acidic than that at position 1 (N1), hence 5-methylhydantoin thio derivatives in the gas phase are an N3-acid. It has been found that the 2,4-dithio species is the most acidic compound among all the investigated compounds. The acidity values were found to be 343 (2O4O), 337 (2S4O), 336 (2O4S) and 332 kcal/mol (2S4S).

3_3_348_355_800


Keywords


DFT; B3LYP; Acidity; Deprotonation; Tautomerization; 5-Methylhydantoin

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.3.3.348-355.638

Links for Article


| | | | | | |

| | | | | | |

Related Articles




Article Metrics

This Abstract was viewed 847 times | PDF Article downloaded 265 times


Citations

/


[1]. Elambalassery G. Jayasree, Soorya Sreedevi
A DFT study on protic solvent assisted tautomerization of heterocyclic thiocarbonyls
Chemical Physics  530, 110650, 2020
DOI: 10.1016/j.chemphys.2019.110650
/


[2]. Anife Ahmedova, Petja Marinova, Marin Marinov, Neyko Stoyanov
An integrated experimental and quantum chemical study on the complexation properties of (9′-fluorene)-spiro-5-hydantoin and its thioanalogue
Journal of Molecular Structure  1108, 602, 2016
DOI: 10.1016/j.molstruc.2015.12.018
/


[3]. Zaki S. Safi, Subhia J. Al Hasanat, Nuha A. Wazzan
DFT investigation of the amino/imino proton transfer process of 2-amino-2-oxazolin-4-one in gas phase and solution
Journal of Theoretical and Computational Chemistry  17(01), 1850004, 2018
DOI: 10.1142/S0219633618500049
/


[4]. Zaki S. Safi, Salama Omar, Subhia J. Al Hasanat, Nuha Wazzan, Abdesslem Jedidi
Thermodynamic, kinetic and structural investigation of the catalytic role of some protic solvents on the proton transfer reaction in hydantoin: Density functional theory study
Chemical Physics Letters  739, 136931, 2020
DOI: 10.1016/j.cplett.2019.136931
/


References

[1]. Smith, B. J.; Radom, L. J. Am. Chem. Soc. 1992, 114, 36-41.
http://dx.doi.org/10.1021/ja00027a004

[2]. Smith, B. J.; Radom, L. J. Am. Chem. Soc. 1993, 115, 4885-4888.
http://dx.doi.org/10.1021/ja00064a058

[3]. Whittleton, S. R.; Hunter, K. C.; Wetmore, S. D. J. Phys. Chem. A 2004, 108, 7709-7718.
http://dx.doi.org/10.1021/jp048318r

[4]. Nohodchi, A.; Bolourtchian, N.; Dinarvand, R. Int. J. Pharm. 2003, 250, 85-97.
http://dx.doi.org/10.1016/S0378-5173(02)00488-X

[5]. Nguyen, M. T.; Chandra, A. K.; Zeegers-Huyskens, T. J. Chem. Soc., Faraday Trans. 1998, 94, 1277-1280.

[6]. Lamsabhi, M.; Alcami, M.; Mo, O.; Yanez, M. J. Phys. Chem. A 2006, 110, 1943-1950.
http://dx.doi.org/10.1021/jp055163u
PMid:16451028

[7]. Remko, M.; Lyne, P. D.; Richards, W. G. Phys. Chem. Chem. Phys. 1999, 1, 5353-5357.
http://dx.doi.org/10.1039/a906667e

[8]. Lamsabhi, M.; Alcami, M.; Mo, O.; Bouab, W.; Esseffar, M.; Abboud, J. L. -M.; Yanez, M. J. Phys. Chem. A 2000, 104, 5122-5130.
http://dx.doi.org/10.1021/jp000071k

[9]. Mo, O.; De Paz, J. L. G.; Yanez, M. J. Phys. Chem. 1986, 90, 5597-5604.
http://dx.doi.org/10.1021/j100280a024

[10]. Dang, P.; Madan, A. K. J. Chem. Inf. Comput. Sci. 1994, 34, 1162-1166.
http://dx.doi.org/10.1021/ci00021a024

[11]. Klainpeter, E. Struct. Chem. 1997, 8, 161-165.
http://dx.doi.org/10.1007/BF02262852

[12]. Klainpeter, E.; Heydenreich, M.; Kalder, L.; Koch, A.; Henning, D.; Kempter, G.; Benassi, R.; Taddei, F. J. Mol. Struct. 1997, 403, 111-122.
http://dx.doi.org/10.1016/S0022-2860(96)09403-3

[13]. Camerman, K.; Camerman, N. Acta Cryst. B 1971, 27, 2205-2211.
http://dx.doi.org/10.1107/S0567740871005570

[14]. Simig, G.; Lemport, K.; Tamas, J.; Czria, G. Tetrahedron 1975, 31, 1195-1200.
http://dx.doi.org/10.1016/0040-4020(75)85056-3

[15]. Yadav, A.; Yadav, V. K. J. Mol. Struct. (Theochem) 1994, 315, 245-251.
http://dx.doi.org/10.1016/0166-1280(94)03777-I

[16]. Yadav, A.; Yadav, V. K. J. Mol. Struct. (Theochem) 1994, 315, 245-251.
http://dx.doi.org/10.1016/0166-1280(94)03777-I

[17]. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Jensen, J. H.; Koseki, S.; Gordon, M. S.; Nguyen, K. A.; Windus, T. L.; Albert, S. T. QCPE Bull. 1990, 10, 52-54.

[18]. Safi, Z. S.; Abu-Awwad, F. E-J. Chem. 2008, 5, 884-893.

[19]. Safi, Z. S.; Frenking, G. Int. J. Quantum Chem. 2012, In press, DOI: 10.1002/qua.24017.
http://dx.doi.org/10.1002/qua.24017

[20]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

[21]. Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1994.

[22]. Neumann, R.; Nobes, R. H.; Handy, N. C. Mol. Phys. 1996, 97, 1-36.
http://dx.doi.org/10.1080/00268979600100011

[23]. Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100.
http://dx.doi.org/10.1103/PhysRevA.38.3098
PMid:9900728

[24]. Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.

[25]. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
http://dx.doi.org/10.1103/PhysRevB.37.785

[26]. Gill, P. M. W.; Johnson, B. G.; Pople, J. A.; Frisch, M. J. Chem. Phys. Lett. 1992, 197, 499-505.
http://dx.doi.org/10.1016/0009-2614(92)85807-M

[27]. Kapp J.; Remko, M.; Schleyer, P. v. P. J. Am. Chem. Soc. 1996, 118, 5745-5751.
http://dx.doi.org/10.1021/ja953846p

[28]. Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502-16513.
http://dx.doi.org/10.1021/jp960976r

[29]. Del Bene, J. E. J. Phys. Chem. 1993, 97, 107-110.
http://dx.doi.org/10.1021/j100103a020

[30]. Puszynska-Tuszkanow, M.; Daszkiewicz, M.; Maciejewska, G.; Adach, A.; Cieslak-Golonka, M. Struct. Chem. 2010, 21, 315-332.
http://dx.doi.org/10.1007/s11224-009-9533-x

[31]. Vendano, C.; Menendez, J. C. In Hydantoin and Its Derivatives. Kirk-Othmer’s Encyclopedia of Chemical Technology, 2000, 13, 512-533.

[32]. Meot-Ner (Mautner), M. J. J. Am. Chem. Soc. 1988, 110, 3071-3075.
http://dx.doi.org/10.1021/ja00218a013

How to cite


Safi, Z. Eur. J. Chem. 2012, 3(3), 348-355. doi:10.5155/eurjchem.3.3.348-355.638
Safi, Z. Theoretical density functional study of gas-phase tautomerization and acidity of 5-methylhydantoin and its thio derivatives. Eur. J. Chem. 2012, 3(3), 348-355. doi:10.5155/eurjchem.3.3.348-355.638
Safi, Z. (2012). Theoretical density functional study of gas-phase tautomerization and acidity of 5-methylhydantoin and its thio derivatives. European Journal of Chemistry, 3(3), 348-355. doi:10.5155/eurjchem.3.3.348-355.638
Safi, Zaki. "Theoretical density functional study of gas-phase tautomerization and acidity of 5-methylhydantoin and its thio derivatives." European Journal of Chemistry [Online], 3.3 (2012): 348-355. Web. 28 Oct. 2020
Safi, Zaki. "Theoretical density functional study of gas-phase tautomerization and acidity of 5-methylhydantoin and its thio derivatives" European Journal of Chemistry [Online], Volume 3 Number 3 (30 September 2012)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item


DOI Link: https://doi.org/10.5155/eurjchem.3.3.348-355.638

| | | | | | |

| | | | | |

Save to Zotero Save to Mendeley



European Journal of Chemistry 2012, 3(3), 348-355 | doi: https://doi.org/10.5155/eurjchem.3.3.348-355.638 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c)




© Copyright 2010 - 2020  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2020 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.