European Journal of Chemistry 2014, 5(3), 446-450 | doi: https://doi.org/10.5155/eurjchem.5.3.446-450.1026 | Get rights and content

Issue cover





  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Investigation of uranium sorption from acidic sulfate solution using organosilicate compound and Amberlite IRA 402


Mohamed Nouh Kouraim (1,*) , Mohamed El Said Sheta (2) , Mostafa Mahmoud Abd Elaal (3)

(1) Nuclear Materials Authority, El Maadi, 530, Egypt
(2) Nuclear Materials Authority, El Maadi, 530, Egypt
(3) Nuclear Materials Authority, El Maadi, 530, Egypt
(*) Corresponding Author

Received: 31 Jan 2014 | Revised: 01 Mar 2014 | Accepted: 02 Mar 2014 | Published: 30 Sep 2014 | Issue Date: September 2014

Abstract


Sorption of uranium from 6 M free H2SO4 on two anionic sorbents containing different complexing groups, the synthetic Organosilicate compound (OSC) and the Amberlite IRA 402, were investigated. The sorption mechanisms of uranium on both sorbents were also studied. Experimental data indicated that the uranium sorption on either Amberlite IRA 402 or OSC is a function in pH, depending strongly on the aqueous uranyl species. Both sorbents reached a maximum at slightly acidic (pH = ~1) when uranium is exist in the form of negatively charged sulfate complexes. These sorption values were attributed to the ion exchange process between UO2+2 species and interlayer anions on Amberlite IRA 402 and OSC in acidic solutions. Uranium sorbed on OSC through formation of ML3 complex and ML2 for Amberlite IRA 402. Also it was found that the uranium sorption capacity was 20 and 80 mg/g for Amberlite IRA 402 and OSC, respectively, and its elution were effective even with 5 mL of 1 mol/L KNO3.


Keywords


Sorption; Uranium; Investigation; Sulfate solution; Amberlite IRA 402; Organosilicate compound

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.5.3.446-450.1026

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 895 times | icon graph PDF Article downloaded 355 times


Citations

/


[1]. Hutaf Mustafa Baker, Raed Ahmad Ghanem
Study on removal behavior and separation efficiency of naturally occurring bentonite for sulfate from water by continuous column and batch methods
European Journal of Chemistry  6(1), 12, 2015
DOI: 10.5155/eurjchem.6.1.12-20.1129
/


[2]. Sameh H. Othman, Azza A. Ezz Eldin, Emad H. Borai, Wageha H. Mahmoud
Speciation modeling and sorption mechanism for decontamination of naturally occurring radionuclide from sulfuric acid liquor by anion exchange process
Journal of Radioanalytical and Nuclear Chemistry  314(2), 1063, 2017
DOI: 10.1007/s10967-017-5463-z
/


[3]. Mohamed F. Cheira, Bahig M. Atia, Mohamed N. Kouraim
Uranium(VI) recovery from acidic leach liquor by Ambersep 920U SO4 resin: Kinetic, equilibrium and thermodynamic studies
Journal of Radiation Research and Applied Sciences  10(4), 307, 2017
DOI: 10.1016/j.jrras.2017.07.005
/


[4]. Mohamed N. Kouraim, Mohammed S. Hagag, Amr H. Ali
Adsorption of uranium from its aqueous solutions using activated cellulose and silica grafted cellulose
Radiochimica Acta  108(4), 261, 2020
DOI: 10.1515/ract-2019-3149
/


References


[1]. Eisenbud, M. Environmental Radioactivity from Natural, Industrial, and Military Sources, Academic Press, San Diego, 1987.

[2]. Zefirov, A. P.; Nevskii, B. V.; Bakhurov, V. G. In Proc. Iv Int. Conf. on The Peaceful Use of Atomic Energy, Geneva: Un Iaea, 1972.

[3]. Pakholkov, V. S.; Dreipa, E. F. Radiokhimiya 1980, 22, 534-354.

[4]. Beletskii, I. V.; Bogatkov, L. K.; Volkov, N. I. Handbook on Uranium, Skorovarov, D. I. Ed., Moscow: Energoatomizdat, 1997.

[5]. Kolomiets, D. N.; Troshkina, I. D.; Sheremetev, M. F.; Konopleva, L. V. Russ. J. Appl. Chem. 2005, 78, 722-726.
http://dx.doi.org/10.1007/s11167-005-0379-8

[6]. Dyer, A.; Pillinger, M. In Advance in Ion Exchange for Industry and Research, Williams, P. A.; Dyer, A. (Eds), Royal Society of Chemistry, Cambridge, 1999.

[7]. Andreeva, N. R.; Chernyavskaya, N. B. Radiokhimiya 1982, 24, 9-13.

[8]. Ames, L. L.; Cgarrah, J. E.; Walker, B. A. Clays Clay Miner. 1983, 31, 321-326.
http://dx.doi.org/10.1346/CCMN.1983.0310501

[9]. Godelitsas, A.; Misaelides, P.; Filippidis, A.; Charistos, D; Anousis, I. Sci. Total Enivron. 1995, 237, 173-174.

[10]. Godeltsas, A.; Misaelides, P.; Fllippidis, A.; Charistos, D.; Anousis, I. J. Radioanal. Nucl. Ch. 1996, 208, 393-402.
http://dx.doi.org/10.1007/BF02040057

[11]. Garg, B. S.; Sharma, R. K.; Bhojak, N.; Mittal, S. Microchem. J. 1999, 61, 94-114.
http://dx.doi.org/10.1006/mchj.1998.1681

[12]. Adel, M. E.; Khalifa, M. E. J. Radioanal. Nucl. Ch. 2006, 268, 341-348.
http://dx.doi.org/10.1007/s10967-006-0171-0

[13]. Hassan, H. H.; Mayssam, M. C.; Bassem, E.; Younes, H. Eur. J. Chem. 2013, 4, 425‐433.
http://dx.doi.org/10.5155/eurjchem.4.4.425-433.776

[14]. Feng, X.; Fryxell, G. E.; Wang, L. Q.; Kim, A. Y.; Liu, J.; Kemner, K. Science 1997, 276, 923-926.
http://dx.doi.org/10.1126/science.276.5314.923

[15]. Mercier, L.; Pinnavaia, T. Adv. Mater. 2000, 9, 500-503.
http://dx.doi.org/10.1002/adma.19970090611

[16]. Das, N.; Das, J. Inds. J. Chem. 1989, 28, 150-156.

[17]. Philips, R.; Fritz, J. S. Anal. Chim. Acta. 1982, 139, 237-255.
http://dx.doi.org/10.1016/S0003-2670(01)94001-2

[18]. Lee, C. H.; Suh, M. Y.; Kim, J. S.; Kim, D. Y.; Kim, W. H.; Eom, T. Y. Anal. Chim. Acta 1999, 382, 199-203.
http://dx.doi.org/10.1016/S0003-2670(98)00794-6

[19]. Khalifa, M. E. Separ. Sci. Technol. 1998, 33, 21-23.
http://dx.doi.org/10.1080/01496399808545719

[20]. Marczinko, Z. Spectrophotometric Determination of Elements, John Wiley and Sons Inc., New York, USA, 1986.

[21]. Katritzky, A. R.; Meth-Cohn, O.; Rees C. W. Comprehensive Organic Functional Group Transformation, Pergamon: Oxford, 1995.

[22]. Merdivan, M.; Seyhan, S.; Gok, C. Microchim. Acta 2006, 154, 109-114.
http://dx.doi.org/10.1007/s00604-005-0478-5

[23]. Atia, A. A. Hydrometallurgy 2005, 80, 13-22.
http://dx.doi.org/10.1016/j.hydromet.2005.03.009

[24]. Sakaguchi, T.; Nakajima, A. J. Chem. Technol. Biot .1987, 40, 131-149.

[25]. Aslani, M. A. A.; Ereal, M. Biol. Trace Elem. Res. 1994, 737, 43-45.

[26]. Sposito, G. The Surface Chemistry of Soils, New York: Oxford Univ. Press, 1984.

[27]. Strathmann, T. J.; Myneni, S. C. B. Environ. Sci. Technol. 2005, 39, 4027-4034.
http://dx.doi.org/10.1021/es0481629

[28]. Wang, X. K.; Rabung, T.; Geckeis, H.; Panak, P. J.; Klenze, R.; Fanghaenel, T. Radiochim. Acta 2004, 92, 691-695.
http://dx.doi.org/10.1524/ract.92.9.691.54982

[29]. Abusafa, A.; Yucel, H. Sep. Purif. Technol. 2002, 28, 103-116.
http://dx.doi.org/10.1016/S1383-5866(02)00042-4

[30]. Abdel Raouf, M. W.; El-Kamash, A. M. J. Radioanal. Nucl. Ch. 2006, 267, 389-395.
http://dx.doi.org/10.1007/s10967-006-0060-6

[31]. Marcus, Y.; Kolarik, Z. J. Chem. Eng. Data 1973, 18, 155-163.
http://dx.doi.org/10.1021/je60057a019

[32]. Boonamnuayvitaya, V.; Chaiya, C.; Tanthapanichakoon, W.; Jarudilokkul, S. Sep. Purif. Technol. 2004, 35, 11-22.
http://dx.doi.org/10.1016/S1383-5866(03)00110-2


How to cite


Kouraim, M.; Sheta, M.; Abd Elaal, M. Eur. J. Chem. 2014, 5(3), 446-450. doi:10.5155/eurjchem.5.3.446-450.1026
Kouraim, M.; Sheta, M.; Abd Elaal, M. Investigation of uranium sorption from acidic sulfate solution using organosilicate compound and Amberlite IRA 402. Eur. J. Chem. 2014, 5(3), 446-450. doi:10.5155/eurjchem.5.3.446-450.1026
Kouraim, M., Sheta, M., & Abd Elaal, M. (2014). Investigation of uranium sorption from acidic sulfate solution using organosilicate compound and Amberlite IRA 402. European Journal of Chemistry, 5(3), 446-450. doi:10.5155/eurjchem.5.3.446-450.1026
Kouraim, Mohamed, Mohamed El Said Sheta, & Mostafa Mahmoud Abd Elaal. "Investigation of uranium sorption from acidic sulfate solution using organosilicate compound and Amberlite IRA 402." European Journal of Chemistry [Online], 5.3 (2014): 446-450. Web. 19 Oct. 2021
Kouraim, Mohamed, Sheta, Mohamed, AND Abd Elaal, Mostafa. "Investigation of uranium sorption from acidic sulfate solution using organosilicate compound and Amberlite IRA 402" European Journal of Chemistry [Online], Volume 5 Number 3 (30 September 2014)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.5.3.446-450.1026

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2014, 5(3), 446-450 | doi: https://doi.org/10.5155/eurjchem.5.3.446-450.1026 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c)





© Copyright 2010 - 2021  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2021 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.