European Journal of Chemistry 2015, 6(2), 141-150 | doi: https://doi.org/10.5155/eurjchem.6.2.141-150.1193 | Get rights and content

Issue cover





  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Highly sensitive spectrophotometric method for the determination of vanadium in environmental, biological, food and soil samples using orthoaminophenol


Tasnima Zannat (1) , Mohammad Jamaluddin Ahmed (2,*)

(1) Laboratory of Analytical Chemistry, Department of Chemistry, University of Chittagong, Chittagong, 4331, Bangladesh
(2) Laboratory of Analytical Chemistry, Department of Chemistry, University of Chittagong, Chittagong, 4331, Bangladesh
(*) Corresponding Author

Received: 12 Nov 2014 | Accepted: 14 Feb 2015 | Published: 30 Jun 2015 | Issue Date: June 2015

Abstract


A simple, ultra-sensitive and highly selective non-extractive spectrophotometric method for the determination of trace amount of vanadium(V) using orthoamino phenol (OAP) has been developed. OAP reacts in highly acidic (0.005-0.015 mol/L H2SO4) and aqueous media with vanadium(V) to give a chocolate color chelate which has an absorption maximum at 405 nm. The reaction was instantaneous and absorbance remains stable for over 72 h. The average molar absorption co-efficient and Sandell’s sensitivity were found to be 6.7×105 L/mol.cm and 10 ng/cm2 of vanadium(V), respectively. Linear calibration graphs were obtained for 0.02-50.00 mg/L having detection limit 1 µg/L and quantification limit of the reaction were found to be 10 µg/L and RSD 0-2%. The stoichiometric composition of the chelate is 1:3 (Vanadium(V):OAP, v:v). Large excess of over 60 cations, anions and complexing agents (Like tartrate, EDTA, oxalate, chloride, phosphate, thiourea, SCN- etc.) do not interfere in the vanadium determination. The method was successfully used in the determination of vanadium in several standard reference materials (Alloys and steels) as well as in some environmental waters(Potable and polluted), biological samples (Human blood and urine), food samples, soil samples, solution containing both vanadium(IV) and vanadium(V) and complex synthetic mixtures. The results of the proposed method for biological analyses were found to be in excellent agreement with those obtained by AAS. The method has high precision and accuracy (s = ±0.01 for 0.5 µg/mL).


Keywords


Steel; Alloy; Orthoaminophenol; Vanadium determination; Biological and soil samples; Environmental and food samples

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.6.2.141-150.1193

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 1097 times | icon graph PDF Article downloaded 402 times

Funding information


Analytical Chemistry Division, Bangladesh Council of Science and Industrial Research Laboratories, Dhaka, Bangladesh

Citations

/


[1]. Mohammed Jamaluddin Ahmed, Faisal Hossain, Esham Mahmood
A Highly Selective and Simple Spectrophotometric Method for the Determination of Zinc at Nano-trace Levels in Some Environmental, Biological, Food, and Pharmaceutical Samples Using 2-hydroxynaphthaldehydebenzoylhydrazone
European Journal of Chemistry  11(2), 160, 2020
DOI: 10.5155/eurjchem.11.2.160-167.1987
/


[2]. Shaifa Abrarin, Mohammed Jamaluddin Ahmed
A highly sensitive and selective spectrophotometric method for the determination of vanadium at nanotrace levels in some environmental, biological, soil, food, and pharmaceutical samples using salicylaldehyde-benzoylhydrazone
European Journal of Chemistry  11(4), 385, 2020
DOI: 10.5155/eurjchem.11.4.385-395.2030
/


[3]. Muhammad Jamaluddin Ahmed, Muhammad Jihan Uddin, Muhammad Emdadul Hoque
Development of a new highly sensitive and selective spectrophotometric method for the determination of selenium at nano-trace levels in various complex matrices using salicylaldehyde-orthoaminophenol
European Journal of Chemistry  12(4), 469, 2021
DOI: 10.5155/eurjchem.12.4.469-481.2137
/


[4]. Elaheh Nourbala Tafti, Shayesteh Dadfarnia, Ali Mohammad Haji Shabani, Zahra Dehghani Firouzabadi
Determination of vanadium species in water, vegetables, and fruit samples using supramolecular solvent microextraction combined with electrothermal atomic absorption spectrometry
Journal of the Iranian Chemical Society  15(8), 1899, 2018
DOI: 10.1007/s13738-018-1387-y
/


References


[1]. Yadav, D. K.; Lokhande, R. S.; Pitale, S. M.; Janwadkar, S. P.; Navarkar, P. S.; Rana, P. K. World J. Anal. Chem. 2014, 2(1), 10-14.

[2]. Clayton, G. D.; Clayton, F. E. Pathy's Industrial Hygine and Toxicology, 3rd edition, Vol. 24, Wiley, New York, 1981, pp. 2013.

[3]. Herley, L. S. Trace Element Analytical Chemistry in Medicine and Biology etc., Pratter and ScharmelP. (eds), Vol. 3, Walter de Gruyter (eds), Berlin, 1984, pp. 375.

[4]. Mracova, M.; Jirova, D.; Janci, H.; Lener, J. Sci. Total Environ. 1993, 16, 633-633.

[5]. Venugopal, B.; Luckey, T. D. Metal Toxicity in Mammals-2, Plenum Press, New York, 1979, pp. 220.

[6]. Langard, S.; Norseth, T. Handbook on the Toxicology of Metals, Friberg L.; Nordberg G. P.; Vouk V. B. (eds), Elsevier, Amsterdam, 1986.

[7]. Key, M. M.; Henschel, A. F.; Butter, J.; Ligo, R. N.; Tebershed, I. R. Occupational Diseases : A Guide to their recognition, US Department of Health, Education and Welfare, U. S. Govt. Printing, Washington, D. C. June, 1977.

[8]. Shamberger, R. J.; Gunsch, M. S.; Willis, C. P.; Mcormack, I. J. Trace substances in Environmental Health XII, 1986, 27(1-2), pp. 1-9.

[9]. Vijaya, K. R. K.; Yamini, P.; Kishore, K. R.; Venkateswarlu, P. Inter. J. Chem. Eng. Appl. Sci. 2012, 2(1), 1-5.

[10]. Kadyan, P. S.; Singh, D.; Sonia, V. Der Pharma Chemica 2012, 4(4), 1577-1581.

[11]. Yadamari, T.; Yakkala, K.; Gurijala, R. N. J. Encapsul. Adsorp. Sci. 2014, 4, 53-61.
http://dx.doi.org/10.4236/jeas.2014.42006

[12]. Rana, P.; Lokhande, R.; Pitale, S.; Janwadkar, S.; Yadav, D.; Sonopant, D.; Apte, V. S.; Mehta, M. H. Commerce Int. J. Chem. Tech. Res. 2014, 6(4), 2295-2299.

[13]. Narayana, B.; Sunil, K. Eurasian J. Anal. Chem. 2009, 4(2), 141-151.

[14]. Srilalitha, V.; Raghavendra, A.; Seshagiri, V.; Ravindranath, L. K. Analele Universita Niidin Bucuresti-Chimie (Serienou a), 2010, 19(2), 69-76.

[15]. Shishehbore, M.; Jokar, R. Anal. Methods 2011, 3, 2815-2821.
http://dx.doi.org/10.1039/c1ay05369h

[16]. Ahmed, M. J.; Banu, S. Talanta 1999, 48(5), 1085-1094.
http://dx.doi.org/10.1016/S0039-9140(98)00329-4

[17]. Jeffery, G. H.; Bassett, J.; Mendham, J.; Denney, R. C. eds. Vogel's Textbook of Quantitative Analysis, 5th ed. Bath Press Ltd. London, 1994, pp. 404-405.

[18]. Pal, B. K.; Chowdhury, B. Mikrochim. Acta 1984, 2, 121-131.
http://dx.doi.org/10.1007/BF01237266

[19]. Busev, A. I.; Tiptsova, V. G.; Ivanov, V. M. (eds), Analytical Chemistry of Rare elements, Mir Publishers, Moscow, 1981, pp. 386-390.

[20]. Sandell, E. B. Colorimetric Determination of Traces of Metals, 3rd edition, Interscience, New York, 1965, pp. 269-285.

[21]. Ojeda, C. B.; Torres, A. G.; Rojas, F. S.; Pavon, J. M. C. Analyst 1987, 112, 1499-1502.
http://dx.doi.org/10.1039/an9871201499

[22]. Greenberg, R. R.; Kingston, H. M. Anal. Chem. 1983, 55, 1160-1166.
http://dx.doi.org/10.1021/ac00258a041

[23]. You, J. A.; Jones, A. L. Ind. Eng. Chem. Anal. Ed. 1944, 16, 11-16.

[24]. Parker, G. A. Analytical Chemistry of Molybdenum, Springer Verlag, Berlin, 1983.
http://dx.doi.org/10.1007/978-3-642-68992-5

[25]. Sun, C.; Yang, J. Y.; Tzeng, S. R. Analyst 1999, 124, 421-425.
http://dx.doi.org/10.1039/a809596e

[26]. Greenberg, A. E.; Clesceri, L. S.; Trussell, R. R. (eds), Standard Methods for the Examination of Water and Waste Water, 18th ed., American Public Health Association, Washington DC, 1992, pp. 3-53-65.

[27]. Ali, A. M.; Mori, Y.; Sawada, K. Anal. Sci. 2006, 22(9), 1169-1172.
http://dx.doi.org/10.2116/analsci.22.1169

[28]. Fifield, F. W.; Haines, P. J. (eds), Environmental Chemistry, 2nd edition, Blackwell Science, London, 2000, pp. 420-425.

[29]. Stahr, H. M. Analytical Methods in Toxicology, 3rd edition, John Wiley and Sons, New York, 1991, pp. 75-85.

[30]. Hesse, P. R. A Text Book of Soil Chemical Analysis, Chemical Publishing Co. Inc. New York, 1972, pp. 332-356.

[31]. Abbaspur, A.; Moosabi, S. M. M.; Mirzajani, R. Iranian J. Sci. Tech, Trans A3 2007, 31, 43-50.

[32]. Ahmed, M. J.; Roy, U. K. Turk. J. Chem. 2009, 33, 709-726.

[33]. Ahmed, M. J.; Mamun M. A. Talanta 2001, 55(1), 43-55.
http://dx.doi.org/10.1016/S0039-9140(01)00389-7

[34]. Ahmed, M. J.; Hoque, M. R.; Khan, A. S. M. S. H.; Bhattacharjee, S. C. Eurasian J. Anal. Chem. 2010, 5(1), 1-15.

[35]. Ahmed, M. J.; Hossan, K. J. J. Iranian Chem. Soc. 2008, 5(4), 677-688.
http://dx.doi.org/10.1007/BF03246149

[36]. Ahmed, M. J.; Zannat, T. Pakistan J. Anal. Environ. Chem. 2012, 13(1), 22-35.

[37]. Ahmed, M. J.; Jannat, T.; Saifuddin, M.; Bhattacharjee, S. C. Green Pages-The Global Directory for Environmental Technology, 2010, http://www.eco-web.com/med/index.html, ID:100412.

[38]. Soomro, R.; Ahmed, M. J.; Memon, N. Turk. J. Chem. 2011, 35, 155-170.

[39]. Ahmed, M. J.; Uddin, M. N. Chemosphere 2007, 67(10), 2020-2027.
http://dx.doi.org/10.1016/j.chemosphere.2006.11.020

[40]. Ahmed, M. J.; Nasiruddin, M.; Zannat, T.; Sultana, S. Anal. Methods 2014, 6, 2282-2293.
http://dx.doi.org/10.1039/c3ay42113a

[41]. Zannat, T.; Ahmed, M. J. Eur. J. Chem. 2014, 5(1), 101-110.
http://dx.doi.org/10.5155/eurjchem.5.1.101-110.882


How to cite


Zannat, T.; Ahmed, M. Eur. J. Chem. 2015, 6(2), 141-150. doi:10.5155/eurjchem.6.2.141-150.1193
Zannat, T.; Ahmed, M. Highly sensitive spectrophotometric method for the determination of vanadium in environmental, biological, food and soil samples using orthoaminophenol. Eur. J. Chem. 2015, 6(2), 141-150. doi:10.5155/eurjchem.6.2.141-150.1193
Zannat, T., & Ahmed, M. (2015). Highly sensitive spectrophotometric method for the determination of vanadium in environmental, biological, food and soil samples using orthoaminophenol. European Journal of Chemistry, 6(2), 141-150. doi:10.5155/eurjchem.6.2.141-150.1193
Zannat, Tasnima, & Mohammad Jamaluddin Ahmed. "Highly sensitive spectrophotometric method for the determination of vanadium in environmental, biological, food and soil samples using orthoaminophenol." European Journal of Chemistry [Online], 6.2 (2015): 141-150. Web. 17 Jan. 2022
Zannat, Tasnima, AND Ahmed, Mohammad. "Highly sensitive spectrophotometric method for the determination of vanadium in environmental, biological, food and soil samples using orthoaminophenol" European Journal of Chemistry [Online], Volume 6 Number 2 (30 June 2015)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.6.2.141-150.1193

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2015, 6(2), 141-150 | doi: https://doi.org/10.5155/eurjchem.6.2.141-150.1193 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c)





© Copyright 2010 - 2022  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2022 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.