European Journal of Chemistry 2015, 6(3), 254-260. doi:10.5155/eurjchem.6.3.254-260.1233

Quinazolinones linked amino acids derivatives as a new class of promising antimicrobial, antioxidant and anti-inflammatory agents


Kadalipura Puttaswamy Rakesh (1) , Suhas Ramesh (2) , Honnayakanahalli Marichennegowda Manu Kumar (3) , Shivamallu Chandan (4) , Dase Channe Gowda (5,*)

(1) Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore, 570006, Karnataka, India
(2) Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore, 570006, Karnataka, India
(3) Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore, 570006, Karnataka, India
(4) Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore, 570006, Karnataka, India
(5) Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore, 570006, Karnataka, India
(*) Corresponding Author

Received: 22 Dec 2014, Accepted: 28 Mar 2015, Published: 30 Sep 2015

Abstract


Two series of amino acids conjugated quinazolinones (1a-h and 2a-h) were synthesized by acid-amine coupling and the structures of all the compounds were confirmed through spectroscopic techniques such as IR, NMR and HRMS. The synthesized compounds were evaluated for their antimicrobial, antioxidant and anti-inflammatory activities. Biological evaluation study revealed that, the compounds 1f, 2f, 2g and 1g showed good antioxidant activity with 50% of the inhibition concentration (IC50) values 35, 20, 30 and 40 µg/mL, respectively, much better than the standard BHT (IC50 = 45 µg/mL). The compounds 1g, 2e and 2g found to have promising anti-inflammatory activity and almost all the synthesized compounds exhibited good antimicrobial activities (antibacterial and antifungal) against all the selected pathogenic bacteria and fungi. Conjugates containing Trp, Tyr and Pro have shown better activity than the rest of the analogues in the series. The structure-activity relationship was established for these compounds.


Keywords


Amino acids; Conjugation; Quinazolinones; Antioxidant activity; Antimicrobial activity; Anti-inflammatory activity

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.6.3.254-260.1233

Article Metrics


This Abstract was viewed 833 times | PDF Article downloaded 334 times

Citations

/


[1]. Ghaneya S Hassan, Gehan H Hegazy, Noha M Ibrahim, Samar H Fahim
New ibuprofen derivatives as H2S and NO donors as safer anti-inflammatory agents
Future Medicinal Chemistry  , , 2019
DOI: 10.4155/fmc-2018-0467
/


[2]. Xu Zhang, H.M. Manukumar, K.P. Rakesh, C.S. Karthik, H.S. Nagendra Prasad, S. Nanjunda Swamy, P. Mallu, Yasser Hussein Eissa Mohammed, Hua-Li Qin
Role of BP*C@AgNPs in Bap-dependent multicellular behavior of clinically important methicillin-resistant Staphylococcus aureus (MRSA) biofilm adherence: A key virulence study
Microbial Pathogenesis  123, 275, 2018
DOI: 10.1016/j.micpath.2018.07.025
/


[3]. Vivian F. Lotfy, Safaa S. Hassan, Perihan A. Khalf-Alla, Altaf H. Basta
The role of side chain of amino acid on performance of their conjugates with carboxymethyl cellulose and their Pd(II) complexes as bioactive agents
International Journal of Polymeric Materials and Polymeric Biomaterials  69(1), 21, 2020
DOI: 10.1080/00914037.2019.1670179
/


[4]. Meng Wang, K.P. Rakesh, Jing Leng, Wan-Yin Fang, L. Ravindar, D. Channe Gowda, Hua-Li Qin
Amino acids/peptides conjugated heterocycles: A tool for the recent development of novel therapeutic agents
Bioorganic Chemistry  76, 113, 2018
DOI: 10.1016/j.bioorg.2017.11.007
/


[5]. Kadalipura P. Rakesh, Nanjudappa Darshini, Sunnadadoddi L. Vidhya, Rajesha, Ningegowda Mallesha
Synthesis and SAR studies of potent H+/K+-ATPase and anti-inflammatory activities of symmetrical and unsymmetrical urea analogues
Medicinal Chemistry Research  26(8), 1675, 2017
DOI: 10.1007/s00044-017-1878-x
/


[6]. H. K. Kumara, R. Suhas, D. M. Suyoga Vardhan, M. Shobha, D. Channe Gowda
A correlation study of biological activity and molecular docking of Asp and Glu linked bis-hydrazones of quinazolinones
RSC Advances  8(19), 10644, 2018
DOI: 10.1039/C8RA00531A
/


[7]. Alireza Barmak, Khodabakhsh Niknam, Gholamhossein Mohebbi
Synthesis, Structural Studies, and α-Glucosidase Inhibitory, Antidiabetic, and Antioxidant Activities of 2,3-Dihydroquinazolin-4(1H)-ones Derived from Pyrazol-4-carbaldehyde and Anilines
ACS Omega  4(19), 18087, 2019
DOI: 10.1021/acsomega.9b01906
/


[8]. Gao-Feng Zha, K.P. Rakesh, H.M. Manukumar, C.S. Shantharam, Sihui Long
Pharmaceutical significance of azepane based motifs for drug discovery: A critical review
European Journal of Medicinal Chemistry  162, 465, 2019
DOI: 10.1016/j.ejmech.2018.11.031
/


[9]. Dorota Piotrowska, Graciela Andrei, Dominique Schols, Robert Snoeck, Magdalena Grabkowska-Drużyc
New Isoxazolidine-Conjugates of Quinazolinones—Synthesis, Antiviral and Cytostatic Activity
Molecules  21(7), 959, 2016
DOI: 10.3390/molecules21070959
/


[10]. Xing Chen, Jing Leng, K. P. Rakesh, N. Darshini, T. Shubhavathi, H. K. Vivek, N. Mallesha, Hua-Li Qin
Synthesis and molecular docking studies of xanthone attached amino acids as potential antimicrobial and anti-inflammatory agents
MedChemComm  8(8), 1706, 2017
DOI: 10.1039/C7MD00209B
/


[11]. Magdalena Grabkowska-Drużyc, Graciela Andrei, Dominique Schols, Robert Snoeck, Dorota Piotrowska
Isoxazolidine Conjugates of N3-Substituted 6-Bromoquinazolinones—Synthesis, Anti-Varizella-Zoster Virus, and Anti-Cytomegalovirus Activity
Molecules  23(8), 1889, 2018
DOI: 10.3390/molecules23081889
/


[12]. Ashraf Farouq Wasfy, Aly A. Aly, Mohamed S. Behalo, Noura S. Mohamed
Synthesis of novel phthalazine derivatives as pharmacological activities
Journal of Heterocyclic Chemistry  , , 2019
DOI: 10.1002/jhet.3735
/


[13]. M. Xu, S.L. Wang, L. Zhu, P.Y. Wu, W.B. Dai, K.P. Rakesh
Structure-activity relationship (SAR) studies of synthetic glycogen synthase kinase-3β inhibitors: A critical review
European Journal of Medicinal Chemistry  164, 448, 2019
DOI: 10.1016/j.ejmech.2018.12.073
/


[14]. K.P. Rakesh, C.S. Shantharam, H.M. Manukumar
Synthesis and SAR studies of potent H+/K+-ATPase inhibitors of quinazolinone-Schiff’s base analogues
Bioorganic Chemistry  68, 1, 2016
DOI: 10.1016/j.bioorg.2016.07.001
/


[15]. K.P. Rakesh, H.K. Kumara, B.J. Ullas, J. Shivakumara, D. Channe Gowda
Amino acids conjugated quinazolinone-Schiff’s bases as potential antimicrobial agents: Synthesis, SAR and molecular docking studies
Bioorganic Chemistry  90, 103093, 2019
DOI: 10.1016/j.bioorg.2019.103093
/


[16]. K.P. Rakesh, H.K. Kumara, H.M. Manukumar, D. Channe Gowda
Anticancer and DNA binding studies of potential amino acids based quinazolinone analogs: Synthesis, SAR and molecular docking
Bioorganic Chemistry  87, 252, 2019
DOI: 10.1016/j.bioorg.2019.03.038
/


References

[1]. Hess, H. J.; Cronin, T. H.; Scriabine, A. J. Med. Chem. 1968, 11, 130-136.
http://dx.doi.org/10.1021/jm00307a028

[2]. Ghorab, M. M.; Abdel-Gawad, S. M.; El-Gaby, M. S. A. Il Farmaco 2000, 55, 249-255.
http://dx.doi.org/10.1016/S0014-827X(00)00029-X

[3]. Al-Obaid, A. M.; Abdel-Hamide, S. G.; El-Kashef, H. A.; Abdel-Aziz, A. A. M.; El-Azab, A. S.; Al-Khamees, H. A.; El-Subbagh, H. I. Eur. J. Med. Chem. 2009, 44, 2379-2391.
http://dx.doi.org/10.1016/j.ejmech.2008.09.015

[4]. Kumar, A.; Tyagi, M.; Shrivasthava, V. K. Ind. J. Chem. B 2003, 42, 2142-2145.

[5]. Khalil, M. A.; Soliman, R.; Farghaly, A. M.; Bekhit, A. A. Arch. Pharm. 1994, 327, 27-30.
http://dx.doi.org/10.1002/ardp.19943270105

[6]. Shivaram, H. B.; Padmaja, M. T.; Shivnanda, M. K.; Akbarali, P. M. Ind. J. Chem. B 1998, 37, 715-716.

[7]. Nathwami, D.; Wood, M. J. Drugs 1993, 45(6), 866-894.
http://dx.doi.org/10.2165/00003495-199345060-00002

[8]. Schnappinger, D.; Hillen, W. Arch. Microbiol. 1996, 165, 359-369.
http://dx.doi.org/10.1007/s002030050339

[9]. Lee, H. J.; Lee, K. W. Mech. Ageing. Dev. 2006, 127, 424-431.
http://dx.doi.org/10.1016/j.mad.2006.01.021

[10]. Halliwell, B.; Gutteridge, J. M.; Cross, C. E.; Lab, J. Clin. Med. 1992, 119, 598-620.

[11]. Balakumar, C.; Lamba, P.; Kishore, D. P.; Narayana, B. L.; Venkat, K. V. Eur. J. Med. Chem. 2010, 45, 4904-4913.
http://dx.doi.org/10.1016/j.ejmech.2010.07.063

[12]. Suhas, R.; Chandrashekar, S.; Gowda, D. C.; Eur. J. Med. Chem. 2011, 46, 704-711.
http://dx.doi.org/10.1016/j.ejmech.2010.12.005

[13]. Suhas, R.; Chandrashekar, S.; Gowda, D. C. Int. J. Pept. Res. Thera. 2012, 18, 89-98.
http://dx.doi.org/10.1007/s10989-011-9282-8

[14]. Suresha, G. P.; Suhas, R.; Kapfo, W.; Gowda, D. C. Eur. J. Med. Chem. 2011, 46, 2530-2540.
http://dx.doi.org/10.1016/j.ejmech.2011.03.041

[15]. Gadek, T. R.; Nicholas, J. B. Biochem. Pharmacol. 2003, 65, 1-8.
http://dx.doi.org/10.1016/S0006-2952(02)01479-X

[16]. Perez, C.; Paul, M.; Bazerque, P. Acta. Biol. Med. Exp. 1990, 15, 113-115.

[17]. Singh, I.; Singh, V. P. Phytomorphology 2000, 50, 151-157.

[18]. Blois, M. S. Nature 1958, 181, 1199-1200.
http://dx.doi.org/10.1038/1811199a0

[19]. Shinde, U. A.; Phadke, A. S.; Nair, A. M.; Mungantiwar, A. A.; Dikshit, V. J.; Saraf, M. N. Fitoterapia 1999, 70, 251-257.
http://dx.doi.org/10.1016/S0367-326X(99)00030-1

[20]. Fournier, J.; Bruneau, C.; Dixneuf, P. H.; Lecolier, S. J. Org. Chem. 1991, 56, 4456-4458.
http://dx.doi.org/10.1021/jo00014a024

[21]. Mhaske, S. B.; Argade, N. P. J. Org. Chem. 2001, 66, 9038-9040.
http://dx.doi.org/10.1021/jo010727l

[22]. Wohlrab, A.; Lamer, R.; VanNieuwenhze, M. S. J. Am. Chem. Soc. 2007, 129, 4175-4177.
http://dx.doi.org/10.1021/ja068455x

[23]. Shivakumara, K. N.; Prakasha, K. C.; Gowda, D. C. E-J. Chem. 2009, 6(S1), S473-S479.

[24]. Biradar, J. S.; Sasidhar, B. S.; Parveen, R. Eur. J. Med. Chem. 2010, 45, 4074-4078.
http://dx.doi.org/10.1016/j.ejmech.2010.05.067

[25]. Poeggeler, B.; Pappolla, M. A.; Hardeland, R.; Rassoulpour, A.; Hodgkins, P. S.; Guidetti, P.; Schwarcz, R. Brain. Res. 1999, 815, 382-388.
http://dx.doi.org/10.1016/S0006-8993(98)01027-0

[26]. Yasin, C.; Hulya, G.; Abdullah, M.; Ilhami, G. Arch. Pharma. Chem. Life Sci. 2012, 345, 323-334.
http://dx.doi.org/10.1002/ardp.201100272


How to cite


Rakesh, K.; Ramesh, S.; Kumar, H.; Chandan, S.; Gowda, D. Eur. J. Chem. 2015, 6(3), 254-260. doi:10.5155/eurjchem.6.3.254-260.1233
Rakesh, K.; Ramesh, S.; Kumar, H.; Chandan, S.; Gowda, D. Quinazolinones linked amino acids derivatives as a new class of promising antimicrobial, antioxidant and anti-inflammatory agents. Eur. J. Chem. 2015, 6(3), 254-260. doi:10.5155/eurjchem.6.3.254-260.1233
Rakesh, K., Ramesh, S., Kumar, H., Chandan, S., & Gowda, D. (2015). Quinazolinones linked amino acids derivatives as a new class of promising antimicrobial, antioxidant and anti-inflammatory agents. European Journal of Chemistry, 6(3), 254-260. doi:10.5155/eurjchem.6.3.254-260.1233
Rakesh, Kadalipura, Suhas Ramesh, Honnayakanahalli Marichennegowda Manu Kumar, Shivamallu Chandan, & Dase Channe Gowda. "Quinazolinones linked amino acids derivatives as a new class of promising antimicrobial, antioxidant and anti-inflammatory agents." European Journal of Chemistry [Online], 6.3 (2015): 254-260. Web. 22 Nov. 2019
Rakesh, Kadalipura, Ramesh, Suhas, Kumar, Honnayakanahalli, Chandan, Shivamallu, AND Gowda, Dase. "Quinazolinones linked amino acids derivatives as a new class of promising antimicrobial, antioxidant and anti-inflammatory agents" European Journal of Chemistry [Online], Volume 6 Number 3 (30 September 2015)

DOI Link: https://doi.org/10.5155/eurjchem.6.3.254-260.1233

Refbacks

  • There are currently no refbacks.




Copyright (c)




© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.