European Journal of Chemistry 2015, 6(2), 225-236 | doi: https://doi.org/10.5155/eurjchem.6.2.225-236.1246 | Get rights and content






  OPEN ACCESS | PEER-REVIEWED | REVIEW ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Activation parameter changes as a mechanistic tool in SN2 reactions in solution


Vladislav Mikhailovich Vlasov (1,*)

(1) Nikolay Nikolaevich Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation
(*) Corresponding Author

Received: 21 Jan 2015 | Revised: 17 Feb 2015 | Accepted: 21 Feb 2015 | Published: 30 Jun 2015 | Issue Date: June 2015

Abstract


Recent applications of activation parameters variation approach to the elucidation of SN2 reaction mechanisms have led to further clarifications of structures of transition states involved in the concerted reaction pathway. SN2 reactions in solution are reviewed with special emphasis of activation parameter variation ΔX (X = H, S and G) with substituents in the nucleophile, leaving and nonleaving groups applying linear free energy relationships in order to evaluate the resultant δΔXreaction constants. The use of internal enthalpy reaction constants δΔHint as a mechanistic tool is stressed when the structure of transition state in SN2 reaction is changed. Variations of the activation parameters in SN2 reactions and their mechanisms were analyzed.


Keywords


Transition state; Substituent effects; Charge development; Reaction mechanisms; Activation parameters; SN2 reactions in solution

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.6.2.225-236.1246

Links for Article


| | | | | | |

| | | | | | |

Related Articles




Article Metrics

This Abstract was viewed 1097 times | PDF Article downloaded 320 times


Citations

/


References

[1]. Ingold, C. K. Structure and Mechanism in Organic Chemistry. Cornell University Press, Ithaca, New York, 1953.

[2]. Carey, F. A.; Sundbery, R. J. Adv. Org. Chem. A: Structure and Mechanisms, 5th Ed. Springer, New York, 2007.

[3]. Williams, A. Concerted Organic and Bio-organic Mechanisms. CRC Press, Boca Baton, 2000.

[4]. Shaik, S. S.; Schlegel, H. B.; Wolfe, S. Theoretical Aspects of Physical Organic Chemistry, the SN2 Mechanism. Wiley, New York, 1992.

[5]. Pross, A. Theoretical and Physical Principles of Organic Reactivity. Wiley, New York, 1995.

[6]. Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry. University Science Books, Sausalito, CA, 2006.

[7]. Reichardt, C. Solvents and Solvent Effects in Organic Chemistry. 4th Ed. VCH, Weinheim, 2003.

[8]. Lee, I. Chem. Soc. Rev. 1990, 19, 317-333.
http://dx.doi.org/10.1039/cs9901900317

[9]. Uggerud, E. J. Phys. Org. Chem. 2006, 19, 461-466.
http://dx.doi.org/10.1002/poc.1061

[10]. Lee, I.; Sung, D. D. Anilines as Nucleophiles. In The Chemistry of anilines. Rappoport, Z., Ed. Wiley, Chichester, 2007, pp. 537-581, Chapter 10.
http://dx.doi.org/10.1002/9780470871737.ch10

[11]. Ji, P.; Atherton, J.; Page, M. I. Org. Biomol. Chem. 2012, 10, 5732-5739.
http://dx.doi.org/10.1039/c2ob25064k

[12]. Lee, I. Chem. Soc. Rev. 1995, 24, 223-229.
http://dx.doi.org/10.1039/cs9952400223

[13]. Westaway, K. C. Adv. Phys. Org. Chem. 2006, 41, 217-270.

[14]. Hengge, A. C. Acc. Chem. Res. 2002, 35, 105-112.
http://dx.doi.org/10.1021/ar000143q

[15]. Simmon, E. M.; Hartwig, J. F. Angew. Chem. Int. Ed. 2012, 51, 3066-3072.
http://dx.doi.org/10.1002/anie.201107334

[16]. Leffler, J. F.; Grunwald, E. Rates and Equilibria of Organic Reactions. Wiley, New York, London, 1963.

[17]. Hammett, L. P. Physical Organic Chemistry, Reaction Rates, Equilibria and Mechanisms. McGraw Hill, New York, 1970.

[18]. Johnson, C. D. The Hammett Equation. Cambridge University Press, Cambridge, 1973.

[19]. Williams, A. Free Energy Relationships in Organic and Bio-organic Chemistry. The Royal Society of Chemistry, Cambridge, 2003.

[20]. Ammal, S. C.; Mishima, M.; Yamataka, H. J. Org. Chem. 2003, 68, 7772-7778.
http://dx.doi.org/10.1021/jo034971j

[21]. Itoh, S.; Yamataka, H. Chem. Eur. J. 2011, 17, 1230-1237.
http://dx.doi.org/10.1002/chem.201001926

[22]. Itoh, S.; Yoshimura, N.; Sato, M.; Yamataka, H. J. Org. Chem. 2011, 76, 8294-8299.
http://dx.doi.org/10.1021/jo201485y

[23]. Vlasov, V. M. Russ. Chem. Rev. 2006, 75, 765-796.
http://dx.doi.org/10.1070/RC2006v075n09ABEH003614

[24]. Vlasov, V. M. J. Phys. Org. Chem. 2010, 23, 468-476.

[25]. Vlasov, V. M. New J. Chem. 2010, 34, 1408-1416.
http://dx.doi.org/10.1039/c0nj00058b

[26]. Vlasov, V. M. New J. Chem. 2010, 34, 2962-2970.
http://dx.doi.org/10.1039/c0nj00419g

[27]. Vlasov, V. M. J. Phys. Org. Chem. 2012, 25, 296-308.
http://dx.doi.org/10.1002/poc.1912

[28]. Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165- 195.
http://dx.doi.org/10.1021/cr00002a004

[29]. Nummert, V.; Piirsalu, M. J. Chem. Soc. Perkin Trans. 2 2000, 583-593.
http://dx.doi.org/10.1039/a904741g

[30]. Tsuno, Y.; Fujio, M. Chem. Soc. Rev. 1996, 25, 129-139.
http://dx.doi.org/10.1039/cs9962500129

[31]. Krygowski, T. M.; Stepien, B. T. hem. Rev. 2005, 105, 3482-3512.

[32]. Palusiak, M.; Krygowski, T. M. New J. Chem. 2009, 33, 1753-1759.
http://dx.doi.org/10.1039/b905909a

[33]. Exner, O.; Bohm, S. Curr. Org. Chem. 2006, 10, 763-778.
http://dx.doi.org/10.2174/138527206776818892

[34]. Hepler, L. G. J. Am. Chem. Soc. 1963, 85, 3089-3092.
http://dx.doi.org/10.1021/ja00903a008

[35]. Hepler, L. G. Can. J. Chem. 1971, 49, 2803-2807.
http://dx.doi.org/10.1139/v71-466

[36]. Ruff, F. J. Mol. Struct. (Theochem) 2002, 617, 31-45.
http://dx.doi.org/10.1016/S0166-1280(02)00398-6

[37]. Ruff, F. J. Mol. Struct. (Theochem) 2003, 625, 111-120.
http://dx.doi.org/10.1016/S0166-1280(03)00008-3

[38]. Ruff, F. Internet Electron. J. Des. 2004, 3, 474-498.

[39]. Ruff, F.; Farkas, O. J. Org. Chem. 2006, 71, 3409-3416.
http://dx.doi.org/10.1021/jo052101r

[40]. Ruff, F.; Farkas, O.; Kucsman, A. Eur. J. Org. Chem. 2006, 5570.
http://dx.doi.org/10.1002/ejoc.200600543

[41]. Fabian, A.; Ruff, F.; Farkas, O. J. Phys. Org. Chem. 2008, 21, 988-996.
http://dx.doi.org/10.1002/poc.1412

[42]. Exner, O. Prog. Phys. Org. Chem. 1973, 10, 411-482.

[43]. Liu, L.; Guo, Q. X. Chem. Rev. 2001, 101, 673-695.
http://dx.doi.org/10.1021/cr990416z

[44]. Robertson, R. E.; Stein, A.; Sugamori, S. E. Can. J. Chem. 1966, 44, 685-688.
http://dx.doi.org/10.1139/v66-095

[45]. Robertson, R. E. Can. J. Chem. 1953, 31, 589-601.
http://dx.doi.org/10.1139/v53-082

[46]. Hoffman, R. V.; Shankweiler, J. M. J. Am. Chem. Soc. 1986, 108, 5536-5539.
http://dx.doi.org/10.1021/ja00278a028

[47]. Sentega, R. V.; Vizgert, R. V.; Mikhalevich, M. K. Org. React. 1970, 7, 512-537.

[48]. Vizgert, R. V.; Sentega, R. V. Org. React. 1969, 6, 197-213.

[49]. Sentega, R. V.; Mikhalevich, M. K.; Vizgert, R. V. Org. React. 1971, 8, 153-168.

[50]. Arnett, E. M.; Reich, R. J. Am. Chem. Soc. 1980, 102, 5892-5902.
http://dx.doi.org/10.1021/ja00538a031

[51]. Ji, P.; Atherton, J.; Page, M. J. J. Chem. Soc. Faraday Discuss. 2010, 145, 15-25.
http://dx.doi.org/10.1039/B912261N

[52]. Ji, P.; Atherton, J.; Page, M. J. J. Org. Chem. 2011, 76, 1425-1436.
http://dx.doi.org/10.1021/jo102173k

[53]. Svetkin, Y. V.; Mirza, M. M. Org. React. 1971, 8, 875-880.

[54]. Lee, I.; Koh, H. J.; Lee, B. C.; Park, B. S. Bull. Korean Chem. Soc. 1994, 15, 576-581.

[55]. Haberfield, P.; Nudelman, A.; Bloom, A.; Romm, R.; Ginsberg, H. J. Org. Chem. 1971, 36, 1792-1795.
http://dx.doi.org/10.1021/jo00812a016

[56]. Yau, H. M.; Howe, A. G.; Hook, J. M.; Croft, A. K.; Harper, J. B. Org. Biomol. Chem. 2009, 7, 3572-3575.
http://dx.doi.org/10.1039/b909171h

[57]. Gohar, G. A. N.; Khattab, S. N.; Farahat, O. O.; Khalil, H. H. J. Phys. Org. Chem. 2012, 25, 343-350.
http://dx.doi.org/10.1002/poc.1921

[58]. Westaway, K. C.; Waszczylo, Z. Can. J. Chem. 1982, 60, 2500-2520.
http://dx.doi.org/10.1139/v82-360

[59]. Stein, A. R.; Tencer, M.; Moffatt, E. A.; Drawe, R.; Sweet, J. J. Org. Chem. 1980, 45, 3539-3543.
http://dx.doi.org/10.1021/jo01305a045

[60]. Evans, D. P.; Watson, H. B.; Williams, R. J. Chem. Soc. 1939, 1345-1348.
http://dx.doi.org/10.1039/jr9390001345

[61]. Matsui, T.; Tokura, N. Bull. Chem. Soc. Jpn. 1970, 43, 1751-1762.
http://dx.doi.org/10.1246/bcsj.43.1751

[62]. Rao, T. J.; Punnaiah, G.; Sundaram, E. V. Proc. Indian Acad. Sci. (Chem. Sci.) 1986, 97, 55-61.

[63]. Saksena, S. P.; Rose, A. N. Indian J. Chem. 1975, 13, 421-422.

[64]. Vlasov, V. M. Monatsh. Chem. 2013, 144, 41-48.
http://dx.doi.org/10.1007/s00706-012-0765-x

[65]. Soni, A. N.; Pathak, S. B.; Patel, S. R. J. Prakt. Chem. 1972, 314, 780-784.
http://dx.doi.org/10.1002/prac.19723140510

[66]. Ravi, R.; Sanjeev, R.; Jagannadham, V. Int. J. Chem. Kinet. 2013, 45, 803-810.
http://dx.doi.org/10.1002/kin.20818

[67]. Khamis, G.; Stoeva, S.; Aleksiev, D. J. Phys. Org. Chem. 2010, 23, 461-467.

[68]. Perez-Benito, J. F. Monatsh. Chem. 2013, 144, 49-58.
http://dx.doi.org/10.1007/s00706-012-0842-1

[69]. Cooper, A.; Johnson, C. M.; Lakey, J. H.; Nollmann, M. Biophys. Chem. 2001, 93, 215-220.
http://dx.doi.org/10.1016/S0301-4622(01)00222-8

[70]. Cornish-Bowden, A. J. Biosci. 2002, 27, 121-126.
http://dx.doi.org/10.1007/BF02703768

[71]. Starikov, E. B.; Norden, B. J. Phys. Chem. B 2007, 111, 14431-14435.
http://dx.doi.org/10.1021/jp075784i

[72]. Lee, I.; Choi, Y. H.; Rhyu, K. W.; Shim, C. S. J. Chem. Soc. Perkin Trans. 2 1989, 1881-1886.
http://dx.doi.org/10.1039/p29890001881

[73]. Lee, I.; Rhyu, K. W.; Lee, H. W.; Shim, C. S. J. Phys. Org. Chem. 1990, 3, 751-756.
http://dx.doi.org/10.1002/poc.610031109

[74]. Oh, H. K.; Koh, H. J.; Lee, I. J. Chem. Soc. Perkin Trans. 2 1991, 1981-1984.
http://dx.doi.org/10.1039/p29910001981

[75]. Oh, H. K.; Cho, J. H.; Jin, M. J.; Lee, I. J. Phys. Org. Chem. 1994, 7, 629-633.
http://dx.doi.org/10.1002/poc.610071107

[76]. Ando, T.; Tanaka, H.; Yamataka, H. J. Am. Chem. Soc. 1984, 106, 2084-2088.
http://dx.doi.org/10.1021/ja00319a030

[77]. Lee, I.; Sohn, S. C.; Kang, C. H.; Oh, Y. J. J. Chem. Soc. Perkin Trans. 2 1986, 1631-1634.
http://dx.doi.org/10.1039/p29860001631

[78]. Yoh, S. D. J. Korean Chem. Soc. 1975, 19, 116-122.

[79]. Lee, I.; Huh, C.; Koh, H. J.; Lee, H. W. Bull. Korean Chem. Soc. 1988, 9, 376-378.

[80]. Ballistreri, F. P.; Maccarone, E.; Mamo, A. J. Org. Chem. 1976, 41, 3364-3367.
http://dx.doi.org/10.1021/jo00883a005

[81]. Lee, I.; Sohn, S. C.; Song, H. B.; Lee, D. C. J. Korean Chem. Soc. 1984, 28, 155-162.

[82]. Lee, I.; Park, Y. K.; Huh, C.; Lee, H. W. J. Phys. Org. Chem. 1994, 7, 555-560.
http://dx.doi.org/10.1002/poc.610071006

[83]. Kim, S. H.; Yoh, S.-D.; Lim, C.; Mishima, M.; Fujio, M.; Tsuno, Y. J. Phys. Org. Chem. 1998, 11, 254-260.
http://dx.doi.org/10.1002/(SICI)1099-1395(199804)11:4<254::AID-POC2>3.0.CO;2-6

[84]. Lim, C.; Kim, S.-H.; Yoh, S.-D.; Fujio, M.; Tsuno, Y. Tetrahedron Lett. 1997, 38, 3243-3246.
http://dx.doi.org/10.1016/S0040-4039(97)00574-1

[85]. Lee, I.; Kim, I. C. Bull. Korean Chem. Soc. 1988, 9, 133-135.

[86]. Davies, W. C.; Addis, H. W. J. Chem. Soc. 1937, 1622-1627.
http://dx.doi.org/10.1039/jr9370001622

[87]. Li, J.-N.; Fu, Y.; Liu, L.; Guo, Q.-X. Tetrahedron 2006, 62, 11801-11813.
http://dx.doi.org/10.1016/j.tet.2006.09.018

[88]. Kaljurand, I.; Kutt, A.; Soovali, L.; Rodima, T.; Maemets, V.; Leito, I.; Koppel, I. A. J. Org. Chem. 2005, 70, 1019-1028.
http://dx.doi.org/10.1021/jo048252w

[89]. Tanner, E. E. L.; Yau, H. M.; Hawker, R. R.; Croft, A. K.; Harper, J. B. Org. Biomol. Chem. 2013, 11, 6170-6175.
http://dx.doi.org/10.1039/c3ob41038b

[90]. Lee, I.; Kim, H. Y.; Kang, H. K.; Lee, H. W. J. Org. Chem. 1988, 53, 2678-2683.
http://dx.doi.org/10.1021/jo00247a004

[91]. Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529-1550.
http://dx.doi.org/10.1135/cccc19991529

[92]. Oh, Y. K.; Yang, J. H.; Lee, H. W.; Lee, I. New J. Chem, 2000, 24, 213-219.
http://dx.doi.org/10.1039/a909541a

[93]. Bernasconi, C. F.; Michoff, M. E. Z.; de Rossi, R. H.; Granados, A. M. J. Org. Chem. 2007, 72, 1285-1293.
http://dx.doi.org/10.1021/jo062138r

[94]. Bernasconi, C. F.; Perez-Lorenzo, M.; Codding, S. J. J. Org. Chem. 2007, 72, 9456-9463.
http://dx.doi.org/10.1021/jo701422z

[95]. Kondo, Y.; Urade, M.; Yamanishi, Y.; Chen, X. J. Chem. Soc. Perkin Trans. 2 2002, 1449-1454.
http://dx.doi.org/10.1039/b203032m

[96]. Edwards, D. R.; Montoya-Peleaz, P.; Crudden, C. M. Org. Lett. 2007, 9, 5481-5484.
http://dx.doi.org/10.1021/ol702300d

[97]. Lee, I.; Lee, B. S.; Koh, H. J.; Chang, B. D. Bull. Korean Chem. Soc. 1995, 16, 277-281.

[98]. Hallett, J. P.; Liotta, C. L.; Ranieri, G.; Welton, T. J. Org. Chem. 2009, 74, 1864-1868.
http://dx.doi.org/10.1021/jo802121d

[99]. Lee, I.; Shim, C. S.; Chung, S, Y.; Kim, H. Y.; Lee, H. W. J. Chem. Soc. Perkin Trans. 2 1988, 1919-1923.
http://dx.doi.org/10.1039/p29880001919

[100]. Kim, W. K.; Ryu, W. S.; Han, I. S.; Kim, C. K.; Lee, I. J. Phys. Org. Chem. 1998, 11, 115-124.
http://dx.doi.org/10.1002/(SICI)1099-1395(199802)11:2<115::AID-POC985>3.0.CO;2-B

[101]. Cowie, G. R.; Fitches, H. J. M.; Kohnstam, G. J. Chem. Soc. 1963, 1585-1593.

[102]. Fox, J. R.; Kohnstam, G. J. Chem. Soc. 1963, 1593-1598.

[103]. Phan, T. B.; Nolte, C.; Kobayashi, S.; Ofial, A. R.; Mayr, H. J. Am. Chem. Soc. 2009, 131, 11392- 11401.

[104]. Bel'skii, V. Е. Russ. Chem. Bull. 2000, 1968-1973.

[105]. Jiang, L.; Orimoto, Y.; Aoki, Y. J. Phys. Org. Chem. 2013, 26, 885-891.
http://dx.doi.org/10.1002/poc.3186

[106]. Rablen, P. R.; McLarney, B. D.; Karlow, B. J.; Schneider, J. E. J. Org. Chem. 2014, 79, 867-879.

[107]. Nettey, S.; Swift, C. A.; Joviliano, R.; Noin, D. O.; Gronert, S. J. Am. Chem. Soc. 2012, 134, 9303-9310.

[108]. Wu, C. H.; Galabov, B.; Wu, J. I. C.; Ilieva, S. I.; Schleyer, P. von R.; Allen, W. D. J. Am. Chem. Soc. 2014, 136, 3118-3126.

[109]. Li, Q. G.; Xue, Y. J. Phys. Chem. A 2009, 113, 10359-10366.

[110]. Wang, T.; Yin, H.; Wang, D.; Valiev, M. J. Phys. Chem. A 2012, 116, 2371-2376.
http://dx.doi.org/10.1021/jp3005986

[111]. Jaworski, J. S. J. Phys. Org. Chem. 2002, 15, 319-323.
http://dx.doi.org/10.1002/poc.490

[112]. Doi, K.; Togano, E.; Xantheas, S. S.; Nakanishi, R.; Nagata, T.; Ebata, T.; Inokuchi, Y. Angew. Chem. Int. Ed. 2013, 52, 4380-4383.
http://dx.doi.org/10.1002/anie.201207697

[113]. Chen, X.; Brauman, J. I. J. Am. Chem. Soc. 2008, 130, 15038-15046.
http://dx.doi.org/10.1021/ja802814a

[114]. Westaway, K. C.; Gao, Y.; Fang, Y. R. J. Org. Chem. 2003, 68, 3084-3089.
http://dx.doi.org/10.1021/jo026879d

[115]. Streitwieser, A.; Jayasree, E. G.; Leung, S. S.-H.; Choy, G. S. C. J. Org. Chem. 2005, 70, 8486-8491.
http://dx.doi.org/10.1021/jo051277q

[116]. Cayzergues, P.; Georgoulis, C.; Mathieu, G. J. Chim. Phys. 1987, 84, 63-70.

[117]. Chen, X.; Regan, C. K.; Craig, S. L.; Krenske, E. H.; Houk, K. N.; Jorgensen, W. L.; Brauman, J. I. J. Am. Chem. Soc. 2009, 131, 16162-161710.
http://dx.doi.org/10.1021/ja9053459

[118]. Mohamed, A. A.; Jensen, F. J. Phys. Chem. A 2001, 105, 3259-3268.
http://dx.doi.org/10.1021/jp002802m

[119]. Laerdahl, J. K.; Uggerud, E. Int. J. Mass Spectrom. 2002, 214, 277-314.
http://dx.doi.org/10.1016/S1387-3806(01)00575-9

[120]. Humeres, E.; Nunes, R. J.; Machado, V. G.; Gasques, M. D. G.; Machado, C. J. Org. Chem. 2001, 66, 1163-1170.
http://dx.doi.org/10.1021/jo0012501

[121]. Melo, A.; Alfaia, A. J. I.; Reis, J. C. R.; Calado, A. R. T. J. Phys. Chem. B 2006, 110, 1877-1888.
http://dx.doi.org/10.1021/jp055660a

[122]. Almerindo, G. I.; Pliego, J. R. Jr. Chem. Phys. Lett. 2006, 423, 459-462.
http://dx.doi.org/10.1016/j.cplett.2006.04.015

[123]. Pliego, J. R. Jr. J. Phys. Chem. B 2009, 113, 505-510.
http://dx.doi.org/10.1021/jp808581t

[124]. Ebrahimi, A.; Habibi, M.; Amirmijani, A. J. Mol. Struct. (Theochem) 2007, 809, 115-124.
http://dx.doi.org/10.1016/j.theochem.2007.01.037

[125]. Im, S.; Jang, S. W.; Kim, H. R.; Oh, Y. H.; Park, S. W.; Lee, S.; Chi, D. Y. J. Phys. Chem. A 2009, 113, 3685-3689.
http://dx.doi.org/10.1021/jp900576x

[126]. Kim, J. Y.; Kim, D. W.; Song, C. E.; Chi, D. Y.; Lee, S. J. Phys. Org. Chem. 2013, 26, 9-14.
http://dx.doi.org/10.1002/poc.3010

[127]. Bento, A. P.; Bickelhaupt, F. M. J. Org. Chem. 2007, 72, 2201-2207.
http://dx.doi.org/10.1021/jo070076e

[128]. Bento, A. P.; Bickelhaupt, F. M. J. Org. Chem. 2008, 73, 7290-7299.
http://dx.doi.org/10.1021/jo801215z

[129]. Bento, A. P.; Bickelhaupt, F. M. Chem. Asian J. 2008, 3, 1783-1792.
http://dx.doi.org/10.1002/asia.200800065

[130]. Van Bochove, M. A.; Bickelhaupt, F. M. Eur. J. Org. Chem. 2008, 649-654.
http://dx.doi.org/10.1002/ejoc.200700953

[131]. Garver, J. M.; Fang, Y. R.; Eyet, N.; Villano, S. M.; Bierbaum, V. M.; Westaway, K. C. J. Am. Chem. Soc. 2010, 132, 3808-3814.
http://dx.doi.org/10.1021/ja909399u

How to cite


Vlasov, V. Eur. J. Chem. 2015, 6(2), 225-236. doi:10.5155/eurjchem.6.2.225-236.1246
Vlasov, V. Activation parameter changes as a mechanistic tool in SN2 reactions in solution. Eur. J. Chem. 2015, 6(2), 225-236. doi:10.5155/eurjchem.6.2.225-236.1246
Vlasov, V. (2015). Activation parameter changes as a mechanistic tool in SN2 reactions in solution. European Journal of Chemistry, 6(2), 225-236. doi:10.5155/eurjchem.6.2.225-236.1246
Vlasov, Vladislav. "Activation parameter changes as a mechanistic tool in SN2 reactions in solution." European Journal of Chemistry [Online], 6.2 (2015): 225-236. Web. 6 Aug. 2020
Vlasov, Vladislav. "Activation parameter changes as a mechanistic tool in SN2 reactions in solution" European Journal of Chemistry [Online], Volume 6 Number 2 (30 June 2015)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item


DOI Link: https://doi.org/10.5155/eurjchem.6.2.225-236.1246

| | | | | | |

| | | | | |

Save to Zotero Save to Mendeley



European Journal of Chemistry 2015, 6(2), 225-236 | doi: https://doi.org/10.5155/eurjchem.6.2.225-236.1246 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c)




© Copyright 2010 - 2020  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2020 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.

hatay escort hatay escort corlu escort corum escort burgaz escort giresun escort aydin escort ordu escort erzincan escort hatay escort sivas escort rize escort edirne escort aksaray escort kibris escort isparta escort erzurum escort tekirdag escort usak escort urfa escort kastamonu escort kibris escort manisa escort giresun escort urfa escort nevsehir escort sivas escort yalova escort ordu escort hatay escort yalova escort amasya escort kayseri escort ordu escort maras escort canakkale escort yalova escort balikesir escort manisa escort urfa escort mugla escort trabzon escort bolu escort corlu escort diyarbakir escort isparta escort kutahya escort elazig escort erzurum escort sakarya escort afyon escort kutahya escort konya escort agri escort cesme escort sinop escort sivas escort konya escort kibris escort adapazari escort luleburgaz escort adana escort kibris escort rize escort sakarya escort alanya escort isparta escort burdur escort konya escort bitlis escort canakkale escort sivas escort amasya escort mus escort aydin escort van escort yalova escort kastamonu escort mardin escort bolu escort afyon escort sakarya escort isparta escort tokat escort trakya escort bayburt escort urfa escort mardin escort