

High temperature CO2 sorption using Ca(OH)2 in pilot scale packed column
Halugondanahalli Sadashivaiah Preetham (1,*)




(1) Department of Post Graduate Studies and Research in Industrial Chemistry, Kuvempu University, Jnana Sahyadri, Shankaraghatta, 577451, Shimoga, Karnataka, India
(2) Department of Chemical Engineering, M.S. Ramaiah Institute of Technology, Bangalore, 560054, Karnataka, India
(3) Department of Chemical Engineering, M.S. Ramaiah Institute of Technology, Bangalore, 560054, Karnataka, India
(4) Department of Post Graduate Studies and Research in Industrial Chemistry, Kuvempu University, Jnana Sahyadri, Shankaraghatta, 577451, Shimoga, Karnataka, India
(*) Corresponding Author
Received: 31 Dec 2015 | Revised: 03 Mar 2016 | Accepted: 05 Mar 2016 | Published: 30 Jun 2016 | Issue Date: June 2016
Abstract
Carbon dioxide is the major content of greenhouse gases, which is released by many industries such as paper, cement and steel industries etc. Removal or separation of CO2 from the atmosphere is a challenging task for the researchers as it related to the human health and affects environment. Many methods and techniques have been tried for the removal of CO2, among them sorption method was found to be more simple and economical. Majority of research work related to CO2 sequestration was carried out using Thermo Gravimetric Analysis (TGA). In the present study an attempt was made to study high temperature CO2 sorption using self-fabricated packed bed column in pilot scale. In this work the absorption column was designed to utilize the flue gas temperature for effective sorption of carbon dioxide using Calcium hydroxide [Ca(OH)2] as a sorbent. The Ca(OH)2 was made into cylindrical extrudates. The gas mixture containing nitrogen and carbon dioxide was heated and subjected to CO2 sorption using Ca(OH)2. The sorption process for various temperatures was studied at a constant flow rate and fixed bed height. Concentration of CO2 was measured using a flue gas analyzer (NDIR sensors). The temperature was found to be major factor affecting sorption process. The optimum temperature was found to be 300 °C. Increase in the temperature above 300 °C, resulted in sintering and weight loss of the sorbent. The conversion of Ca(OH)2 to CaCO3 is confirmed by FT-IR, Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis(EDAX) and XRD.
Keywords
Full Text:
PDF

DOI: 10.5155/eurjchem.7.2.176-181.1391
Links for Article
| | | | | | |
| | | | | | |
| | |
Related Articles
Article Metrics


Funding information
Defence Research and Development Organization (DRDO) for financial assistance (Reference No.: ERIP/ER/0905106/M/01/1211), New Delhi, India
Citations
[1]. Luis Salazar Hoyos, Betina Faroldi, Laura Cornaglia
Reactivity of rice husk-derived lithium silicates followed by in situ Raman spectroscopy
Journal of Alloys and Compounds 778, 699, 2019
DOI: 10.1016/j.jallcom.2018.11.036

References
[1]. Yu, C. H.; Huang, C. H.; Tan, C. S. Aerosol Air Quality Res. 2012, 12, 745-769.
[2]. Hufton, J. R.; Mayorga, S.; Sircar, S. AIChE J. 1999, 45, 248-256.
http://dx.doi.org/10.1002/aic.690450205
[3]. Chernysheva, M.; Badun, G. Eur. J. Chem. 2011, 2(1), 61-64.
http://dx.doi.org/10.5155/eurjchem.2.1.61-64.229
[4]. Florin, N. H.; Harris, A. T. Chem. Eng. Sci. 2008, 63, 287-316.
http://dx.doi.org/10.1016/j.ces.2007.09.011
[5]. Wirawan, S. K.; Creaser, D. Microporous Mesoporous Mater. 2006, 91, 196-205.
http://dx.doi.org/10.1016/j.micromeso.2005.11.047
[6]. Macario, A.; Katovic, A.; Giordano, G.; Iucolano, F.; Caputo, D. Microporous Mesoporous Mater. 2005, 81, 139-147.
http://dx.doi.org/10.1016/j.micromeso.2005.02.002
[7]. Mayra, Y.; Veliz-Enriqueza, Gonzalezb, G.; Pfeifferb, H. J. Solid State Chem. 2007, 180, 2485-2492.
[8]. Xue, D. X.; Cairns, A. J.; Belmabkhout, Y.; Wojtas, L.; Liu, Y.; Alkordi, M. H.; Eddaoudi, M. J. Am. Chem. Soc. 2013, 135, 7660-7667.
http://dx.doi.org/10.1021/ja401429x
[9]. Gupta, H.; Fan, L. S. Ind. Eng. Chem. Res. 2002, 41, 4035-4042.
http://dx.doi.org/10.1021/ie010867l
[10]. Iyer, M. V.; Gupta, H.; Sakadjian, B. B.; Fan, L. S. Ind. Eng. Chem. Res. 2004, 43, 3939-3947.
http://dx.doi.org/10.1021/ie0341911
[11]. Abanades, J. C.; Anthony, E. J.; Wang, J.; Oakey, J. E. Environ. Sci. Technol. 2005, 39, 2861-2866.
http://dx.doi.org/10.1021/es0496221
[12]. Florin, N. H.; Harris, A. T. Energy Fuels 2008, 22, 2734-2742.
http://dx.doi.org/10.1021/ef700751g
[13]. Tessie Du Motay, M.; Marechal, M. Bull. Soc. Chi. France 1868, 9, 334-335.
[14]. Curran, G. P.; Fink, C. E.; Gorin, E. Fuel Gasification, American Chemical Society, Washington, D. C., 1966.
[15]. Dedman, A. J.; Owen, A. J. Trans. Faraday Soc. 1962, 58, 2027-2035.
http://dx.doi.org/10.1039/tf9625802027
[16]. Mastin, J.; Aranda, A.; Meyer, J. Energy Procedia 2011, 4, 1184-1191.
http://dx.doi.org/10.1016/j.egypro.2011.01.172
[17]. Borgwardt, R. H. Ind. Eng. Chem. Res. 1989, 28, 493-500.
http://dx.doi.org/10.1021/ie00088a019
[18]. Sun, P.; Grace, J. R.; Lim, C. J.; Anthony, E. J. Energy Fuels 2007, 21, 163-170.
http://dx.doi.org/10.1021/ef060329r
[19]. Lin, S. Y.; Harada, M.; Suzuki, Y.; Hatano, H. Fuel 2006, 85, 1143-1150.
http://dx.doi.org/10.1016/j.fuel.2005.05.029
[20]. Nikulshina, V.; Galvez, M. E.; Steinfeld, A. Chem. Eng. J. 2007, 129, 75-83.
http://dx.doi.org/10.1016/j.cej.2006.11.003
[21]. Kuramoto, K.; Shibano, S.; Fujimoto, S.; Kimura, T.; Suzuki, Y.; Hatano, H.; Shi-Ying, L.; Harada, M.; Morishita, K.; Takarada, T. Ind. Eng. Chem. Res. 2003, 42, 3566-3570.
http://dx.doi.org/10.1021/ie030159v
[22]. Abanades, J. C. Chem. Eng. J. 2002, 90, 303-306.
http://dx.doi.org/10.1016/S1385-8947(02)00126-2
[23]. Matsuyama, H.; Masui, K.; Kitamura, Y.; Maki, T.; Teramoto, M. Separat. Purif. Technol. 1999, 17, 235-241.
http://dx.doi.org/10.1016/S1383-5866(99)00047-7
[24]. Ueno, S.; Jayaseelan, D. D.; She, J.; Kondo, N.; Ohji, T.; Kanzaki, S. Ceramics Int. 2004, 30, 1031-1034.
http://dx.doi.org/10.1016/j.ceramint.2003.10.023
[25]. Quintanilla, M. A. S.; Valverde, J. M. Particuology 2013, 11, 448-453.
http://dx.doi.org/10.1016/j.partic.2012.06.015
[26]. Lebarbiera, V. M.; Daglea, R. A.; Kovarika, L.; Albrechtb, K. O.; Lia, X.; Lia, L.; Taylorc, C. E.; Baod, X.; Wang, Y. Appl. Cataly. B: Environ. 2014, 144, 223-232.
http://dx.doi.org/10.1016/j.apcatb.2013.06.034
[27]. Stolaroff, J.; Keith, D.; Lowry, G. 8th Int. Conf. on Greenhouse Gas Control Technologies, Trondheim, Norway, 2006.
[28]. Bhavna, S.; Ritesh, T.; Ajay, S. Environ. Prog. Sustain. Energy 2011, 30, 358-367.
http://dx.doi.org/10.1002/ep.10492
[29]. Oliveira, E. L. G.; Grande, C. A.; Rodrigues, A. E. Separat. Purif. Technol. 2008, 62, 137-147.
http://dx.doi.org/10.1016/j.seppur.2008.01.011
[30]. Borgwardt, R. H. Chem. Eng. Sci. 1989, 44, 53-60.
http://dx.doi.org/10.1016/0009-2509(89)85232-7
[31]. Yan, S.; Wang, Y.; Zhang, Y.; Zhou, Y.; Zhou, L. Chem. Phys. Let. 2007, 437, 14-16.
http://dx.doi.org/10.1016/j.cplett.2007.02.008
[32]. Joint Committee on Powder Diffraction Standards, Power Diffraction File, Card no: 85-1108.
[33]. Mishra, A. K.; Ramaprabhu, S. Energy Environ. Sci. 2011, 4, 889-895.
http://dx.doi.org/10.1039/C0EE00076K
How to cite
The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item
DOI Link: https://doi.org/10.5155/eurjchem.7.2.176-181.1391

















European Journal of Chemistry 2016, 7(2), 176-181 | doi: https://doi.org/10.5155/eurjchem.7.2.176-181.1391 | Get rights and content
Refbacks
- There are currently no refbacks.
Copyright (c)
© Copyright 2010 - 2021 • Atlanta Publishing House LLC • All Right Reserved.
The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.
Copyright 2010-2021 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.