European Journal of Chemistry

High temperature CO2 sorption using Ca(OH)2 in pilot scale packed column



Main Article Content

Halugondanahalli Sadashivaiah Preetham
Gattumane Motappa Madhu
Brijesh Brijesh
K Vasantha Kumar Pai

Abstract

Carbon dioxide is the major content of greenhouse gases, which is released by many industries such as paper, cement and steel industries etc. Removal or separation of CO2 from the atmosphere is a challenging task for the researchers as it related to the human health and affects environment. Many methods and techniques have been tried for the removal of CO2, among them sorption method was found to be more simple and economical. Majority of research work related to CO2 sequestration was carried out using Thermo Gravimetric Analysis (TGA). In the present study an attempt was made to study high temperature CO2 sorption using self-fabricated packed bed column in pilot scale. In this work the absorption column was designed to utilize the flue gas temperature for effective sorption of carbon dioxide using Calcium hydroxide [Ca(OH)2] as a sorbent. The Ca(OH)2 was made into cylindrical extrudates. The gas mixture containing nitrogen and carbon dioxide was heated and subjected to CO2 sorption using Ca(OH)2. The sorption process for various temperatures was studied at a constant flow rate and fixed bed height. Concentration of CO2 was measured using a flue gas analyzer (NDIR sensors). The temperature was found to be major factor affecting sorption process. The optimum temperature was found to be 300 °C. Increase in the temperature above 300 °C, resulted in sintering and weight loss of the sorbent. The conversion of Ca(OH)2 to CaCO3 is confirmed by FT-IR, Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis(EDAX) and XRD.


icon graph This Abstract was viewed 1537 times | icon graph Article PDF downloaded 664 times

How to Cite
(1)
Preetham, H. S.; Madhu, G. M.; Brijesh, B.; Pai, K. V. K. High Temperature CO2 Sorption Using Ca(OH)2 in Pilot Scale Packed Column. Eur. J. Chem. 2016, 7, 176-181.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Yu, C. H.; Huang, C. H.; Tan, C. S. Aerosol Air Quality Res. 2012, 12, 745-769.

[2]. Hufton, J. R.; Mayorga, S.; Sircar, S. AIChE J. 1999, 45, 248-256.
http://dx.doi.org/10.1002/aic.690450205

[3]. Chernysheva, M.; Badun, G. Eur. J. Chem. 2011, 2(1), 61-64.
http://dx.doi.org/10.5155/eurjchem.2.1.61-64.229

[4]. Florin, N. H.; Harris, A. T. Chem. Eng. Sci. 2008, 63, 287-316.
http://dx.doi.org/10.1016/j.ces.2007.09.011

[5]. Wirawan, S. K.; Creaser, D. Microporous Mesoporous Mater. 2006, 91, 196-205.
http://dx.doi.org/10.1016/j.micromeso.2005.11.047

[6]. Macario, A.; Katovic, A.; Giordano, G.; Iucolano, F.; Caputo, D. Microporous Mesoporous Mater. 2005, 81, 139-147.
http://dx.doi.org/10.1016/j.micromeso.2005.02.002

[7]. Mayra, Y.; Veliz-Enriqueza, Gonzalezb, G.; Pfeifferb, H. J. Solid State Chem. 2007, 180, 2485-2492.

[8]. Xue, D. X.; Cairns, A. J.; Belmabkhout, Y.; Wojtas, L.; Liu, Y.; Alkordi, M. H.; Eddaoudi, M. J. Am. Chem. Soc. 2013, 135, 7660-7667.
http://dx.doi.org/10.1021/ja401429x

[9]. Gupta, H.; Fan, L. S. Ind. Eng. Chem. Res. 2002, 41, 4035-4042.
http://dx.doi.org/10.1021/ie010867l

[10]. Iyer, M. V.; Gupta, H.; Sakadjian, B. B.; Fan, L. S. Ind. Eng. Chem. Res. 2004, 43, 3939-3947.
http://dx.doi.org/10.1021/ie0341911

[11]. Abanades, J. C.; Anthony, E. J.; Wang, J.; Oakey, J. E. Environ. Sci. Technol. 2005, 39, 2861-2866.
http://dx.doi.org/10.1021/es0496221

[12]. Florin, N. H.; Harris, A. T. Energy Fuels 2008, 22, 2734-2742.
http://dx.doi.org/10.1021/ef700751g

[13]. Tessie Du Motay, M.; Marechal, M. Bull. Soc. Chi. France 1868, 9, 334-335.

[14]. Curran, G. P.; Fink, C. E.; Gorin, E. Fuel Gasification, American Chemical Society, Washington, D. C., 1966.

[15]. Dedman, A. J.; Owen, A. J. Trans. Faraday Soc. 1962, 58, 2027-2035.
http://dx.doi.org/10.1039/tf9625802027

[16]. Mastin, J.; Aranda, A.; Meyer, J. Energy Procedia 2011, 4, 1184-1191.
http://dx.doi.org/10.1016/j.egypro.2011.01.172

[17]. Borgwardt, R. H. Ind. Eng. Chem. Res. 1989, 28, 493-500.
http://dx.doi.org/10.1021/ie00088a019

[18]. Sun, P.; Grace, J. R.; Lim, C. J.; Anthony, E. J. Energy Fuels 2007, 21, 163-170.
http://dx.doi.org/10.1021/ef060329r

[19]. Lin, S. Y.; Harada, M.; Suzuki, Y.; Hatano, H. Fuel 2006, 85, 1143-1150.
http://dx.doi.org/10.1016/j.fuel.2005.05.029

[20]. Nikulshina, V.; Galvez, M. E.; Steinfeld, A. Chem. Eng. J. 2007, 129, 75-83.
http://dx.doi.org/10.1016/j.cej.2006.11.003

[21]. Kuramoto, K.; Shibano, S.; Fujimoto, S.; Kimura, T.; Suzuki, Y.; Hatano, H.; Shi-Ying, L.; Harada, M.; Morishita, K.; Takarada, T. Ind. Eng. Chem. Res. 2003, 42, 3566-3570.
http://dx.doi.org/10.1021/ie030159v

[22]. Abanades, J. C. Chem. Eng. J. 2002, 90, 303-306.
http://dx.doi.org/10.1016/S1385-8947(02)00126-2

[23]. Matsuyama, H.; Masui, K.; Kitamura, Y.; Maki, T.; Teramoto, M. Separat. Purif. Technol. 1999, 17, 235-241.
http://dx.doi.org/10.1016/S1383-5866(99)00047-7

[24]. Ueno, S.; Jayaseelan, D. D.; She, J.; Kondo, N.; Ohji, T.; Kanzaki, S. Ceramics Int. 2004, 30, 1031-1034.
http://dx.doi.org/10.1016/j.ceramint.2003.10.023

[25]. Quintanilla, M. A. S.; Valverde, J. M. Particuology 2013, 11, 448-453.
http://dx.doi.org/10.1016/j.partic.2012.06.015

[26]. Lebarbiera, V. M.; Daglea, R. A.; Kovarika, L.; Albrechtb, K. O.; Lia, X.; Lia, L.; Taylorc, C. E.; Baod, X.; Wang, Y. Appl. Cataly. B: Environ. 2014, 144, 223-232.
http://dx.doi.org/10.1016/j.apcatb.2013.06.034

[27]. Stolaroff, J.; Keith, D.; Lowry, G. 8th Int. Conf. on Greenhouse Gas Control Technologies, Trondheim, Norway, 2006.

[28]. Bhavna, S.; Ritesh, T.; Ajay, S. Environ. Prog. Sustain. Energy 2011, 30, 358-367.
http://dx.doi.org/10.1002/ep.10492

[29]. Oliveira, E. L. G.; Grande, C. A.; Rodrigues, A. E. Separat. Purif. Technol. 2008, 62, 137-147.
http://dx.doi.org/10.1016/j.seppur.2008.01.011

[30]. Borgwardt, R. H. Chem. Eng. Sci. 1989, 44, 53-60.
http://dx.doi.org/10.1016/0009-2509(89)85232-7

[31]. Yan, S.; Wang, Y.; Zhang, Y.; Zhou, Y.; Zhou, L. Chem. Phys. Let. 2007, 437, 14-16.
http://dx.doi.org/10.1016/j.cplett.2007.02.008

[32]. Joint Committee on Powder Diffraction Standards, Power Diffraction File, Card no: 85-1108.

[33]. Mishra, A. K.; Ramaprabhu, S. Energy Environ. Sci. 2011, 4, 889-895.
http://dx.doi.org/10.1039/C0EE00076K

Supporting Agencies

Defence Research and Development Organization (DRDO) for financial assistance (Reference No., ERIP/ER/0905106/M/01/1211), New Delhi, India
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).