European Journal of Chemistry 2016, 7(2), 176-181. doi:10.5155/eurjchem.7.2.176-181.1391

High temperature CO2 sorption using Ca(OH)2 in pilot scale packed column


Halugondanahalli Sadashivaiah Preetham (1,*) , Gattumane Motappa Madhu (2) , Brijesh Brijesh (3) , K Vasantha Kumar Pai (4)

(1) Department of Post Graduate Studies and Research in Industrial Chemistry, Kuvempu University, Jnana Sahyadri, Shankaraghatta, 577451, Shimoga, Karnataka, India
(2) Department of Chemical Engineering, M.S. Ramaiah Institute of Technology, Bangalore, 560054, Karnataka, India
(3) Department of Chemical Engineering, M.S. Ramaiah Institute of Technology, Bangalore, 560054, Karnataka, India
(4) Department of Post Graduate Studies and Research in Industrial Chemistry, Kuvempu University, Jnana Sahyadri, Shankaraghatta, 577451, Shimoga, Karnataka, India
(*) Corresponding Author

Received: 31 Dec 2015, Accepted: 05 Mar 2016, Published: 30 Jun 2016

Abstract


Carbon dioxide is the major content of greenhouse gases, which is released by many industries such as paper, cement and steel industries etc. Removal or separation of CO2 from the atmosphere is a challenging task for the researchers as it related to the human health and affects environment. Many methods and techniques have been tried for the removal of CO2, among them sorption method was found to be more simple and economical. Majority of research work related to CO2 sequestration was carried out using Thermo Gravimetric Analysis (TGA). In the present study an attempt was made to study high temperature CO2 sorption using self-fabricated packed bed column in pilot scale. In this work the absorption column was designed to utilize the flue gas temperature for effective sorption of carbon dioxide using Calcium hydroxide [Ca(OH)2] as a sorbent. The Ca(OH)2 was made into cylindrical extrudates. The gas mixture containing nitrogen and carbon dioxide was heated and subjected to CO2 sorption using Ca(OH)2. The sorption process for various temperatures was studied at a constant flow rate and fixed bed height. Concentration of CO2 was measured using a flue gas analyzer (NDIR sensors). The temperature was found to be major factor affecting sorption process. The optimum temperature was found to be 300 °C. Increase in the temperature above 300 °C, resulted in sintering and weight loss of the sorbent. The conversion of Ca(OH)2 to CaCO3 is confirmed by FT-IR, Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis(EDAX) and XRD.


Keywords


CO2; CaCO3; Ca(OH)2; Sorption; High temperature; Packed bed column

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.7.2.176-181.1391

Article Metrics


This Abstract was viewed 509 times | PDF Article downloaded 171 times

Citations

/


[1]. Luis Salazar Hoyos, Betina Faroldi, Laura Cornaglia
Reactivity of rice husk-derived lithium silicates followed by in situ Raman spectroscopy
Journal of Alloys and Compounds  778, 699, 2019
DOI: 10.1016/j.jallcom.2018.11.036
/


References

[1]. Yu, C. H.; Huang, C. H.; Tan, C. S. Aerosol Air Quality Res. 2012, 12, 745-769.

[2]. Hufton, J. R.; Mayorga, S.; Sircar, S. AIChE J. 1999, 45, 248-256.
http://dx.doi.org/10.1002/aic.690450205

[3]. Chernysheva, M.; Badun, G. Eur. J. Chem. 2011, 2(1), 61-64.
http://dx.doi.org/10.5155/eurjchem.2.1.61-64.229

[4]. Florin, N. H.; Harris, A. T. Chem. Eng. Sci. 2008, 63, 287-316.
http://dx.doi.org/10.1016/j.ces.2007.09.011

[5]. Wirawan, S. K.; Creaser, D. Microporous Mesoporous Mater. 2006, 91, 196-205.
http://dx.doi.org/10.1016/j.micromeso.2005.11.047

[6]. Macario, A.; Katovic, A.; Giordano, G.; Iucolano, F.; Caputo, D. Microporous Mesoporous Mater. 2005, 81, 139-147.
http://dx.doi.org/10.1016/j.micromeso.2005.02.002

[7]. Mayra, Y.; Veliz-Enriqueza, Gonzalezb, G.; Pfeifferb, H. J. Solid State Chem. 2007, 180, 2485-2492.

[8]. Xue, D. X.; Cairns, A. J.; Belmabkhout, Y.; Wojtas, L.; Liu, Y.; Alkordi, M. H.; Eddaoudi, M. J. Am. Chem. Soc. 2013, 135, 7660-7667.
http://dx.doi.org/10.1021/ja401429x

[9]. Gupta, H.; Fan, L. S. Ind. Eng. Chem. Res. 2002, 41, 4035-4042.
http://dx.doi.org/10.1021/ie010867l

[10]. Iyer, M. V.; Gupta, H.; Sakadjian, B. B.; Fan, L. S. Ind. Eng. Chem. Res. 2004, 43, 3939-3947.
http://dx.doi.org/10.1021/ie0341911

[11]. Abanades, J. C.; Anthony, E. J.; Wang, J.; Oakey, J. E. Environ. Sci. Technol. 2005, 39, 2861-2866.
http://dx.doi.org/10.1021/es0496221

[12]. Florin, N. H.; Harris, A. T. Energy Fuels 2008, 22, 2734-2742.
http://dx.doi.org/10.1021/ef700751g

[13]. Tessie Du Motay, M.; Marechal, M. Bull. Soc. Chi. France 1868, 9, 334-335.

[14]. Curran, G. P.; Fink, C. E.; Gorin, E. Fuel Gasification, American Chemical Society, Washington, D. C., 1966.

[15]. Dedman, A. J.; Owen, A. J. Trans. Faraday Soc. 1962, 58, 2027-2035.
http://dx.doi.org/10.1039/tf9625802027

[16]. Mastin, J.; Aranda, A.; Meyer, J. Energy Procedia 2011, 4, 1184-1191.
http://dx.doi.org/10.1016/j.egypro.2011.01.172

[17]. Borgwardt, R. H. Ind. Eng. Chem. Res. 1989, 28, 493-500.
http://dx.doi.org/10.1021/ie00088a019

[18]. Sun, P.; Grace, J. R.; Lim, C. J.; Anthony, E. J. Energy Fuels 2007, 21, 163-170.
http://dx.doi.org/10.1021/ef060329r

[19]. Lin, S. Y.; Harada, M.; Suzuki, Y.; Hatano, H. Fuel 2006, 85, 1143-1150.
http://dx.doi.org/10.1016/j.fuel.2005.05.029

[20]. Nikulshina, V.; Galvez, M. E.; Steinfeld, A. Chem. Eng. J. 2007, 129, 75-83.
http://dx.doi.org/10.1016/j.cej.2006.11.003

[21]. Kuramoto, K.; Shibano, S.; Fujimoto, S.; Kimura, T.; Suzuki, Y.; Hatano, H.; Shi-Ying, L.; Harada, M.; Morishita, K.; Takarada, T. Ind. Eng. Chem. Res. 2003, 42, 3566-3570.
http://dx.doi.org/10.1021/ie030159v

[22]. Abanades, J. C. Chem. Eng. J. 2002, 90, 303-306.
http://dx.doi.org/10.1016/S1385-8947(02)00126-2

[23]. Matsuyama, H.; Masui, K.; Kitamura, Y.; Maki, T.; Teramoto, M. Separat. Purif. Technol. 1999, 17, 235-241.
http://dx.doi.org/10.1016/S1383-5866(99)00047-7

[24]. Ueno, S.; Jayaseelan, D. D.; She, J.; Kondo, N.; Ohji, T.; Kanzaki, S. Ceramics Int. 2004, 30, 1031-1034.
http://dx.doi.org/10.1016/j.ceramint.2003.10.023

[25]. Quintanilla, M. A. S.; Valverde, J. M. Particuology 2013, 11, 448-453.
http://dx.doi.org/10.1016/j.partic.2012.06.015

[26]. Lebarbiera, V. M.; Daglea, R. A.; Kovarika, L.; Albrechtb, K. O.; Lia, X.; Lia, L.; Taylorc, C. E.; Baod, X.; Wang, Y. Appl. Cataly. B: Environ. 2014, 144, 223-232.
http://dx.doi.org/10.1016/j.apcatb.2013.06.034

[27]. Stolaroff, J.; Keith, D.; Lowry, G. 8th Int. Conf. on Greenhouse Gas Control Technologies, Trondheim, Norway, 2006.

[28]. Bhavna, S.; Ritesh, T.; Ajay, S. Environ. Prog. Sustain. Energy 2011, 30, 358-367.
http://dx.doi.org/10.1002/ep.10492

[29]. Oliveira, E. L. G.; Grande, C. A.; Rodrigues, A. E. Separat. Purif. Technol. 2008, 62, 137-147.
http://dx.doi.org/10.1016/j.seppur.2008.01.011

[30]. Borgwardt, R. H. Chem. Eng. Sci. 1989, 44, 53-60.
http://dx.doi.org/10.1016/0009-2509(89)85232-7

[31]. Yan, S.; Wang, Y.; Zhang, Y.; Zhou, Y.; Zhou, L. Chem. Phys. Let. 2007, 437, 14-16.
http://dx.doi.org/10.1016/j.cplett.2007.02.008

[32]. Joint Committee on Powder Diffraction Standards, Power Diffraction File, Card no: 85-1108.

[33]. Mishra, A. K.; Ramaprabhu, S. Energy Environ. Sci. 2011, 4, 889-895.
http://dx.doi.org/10.1039/C0EE00076K


How to cite


Preetham, H.; Madhu, G.; Brijesh, B.; Pai, K. Eur. J. Chem. 2016, 7(2), 176-181. doi:10.5155/eurjchem.7.2.176-181.1391
Preetham, H.; Madhu, G.; Brijesh, B.; Pai, K. High temperature CO2 sorption using Ca(OH)2 in pilot scale packed column. Eur. J. Chem. 2016, 7(2), 176-181. doi:10.5155/eurjchem.7.2.176-181.1391
Preetham, H., Madhu, G., Brijesh, B., & Pai, K. (2016). High temperature CO2 sorption using Ca(OH)2 in pilot scale packed column. European Journal of Chemistry, 7(2), 176-181. doi:10.5155/eurjchem.7.2.176-181.1391
Preetham, Halugondanahalli Sadashivaiah, Gattumane Motappa Madhu, Brijesh Brijesh, & K Vasantha Kumar Pai. "High temperature CO2 sorption using Ca(OH)2 in pilot scale packed column." European Journal of Chemistry [Online], 7.2 (2016): 176-181. Web. 21 Sep. 2019
Preetham, Halugondanahalli Sadashivaiah, Madhu, Gattumane Motappa, Brijesh, Brijesh, AND Pai, K Vasantha Kumar. "High temperature CO2 sorption using Ca(OH)2 in pilot scale packed column" European Journal of Chemistry [Online], Volume 7 Number 2 (30 June 2016)

DOI Link: https://doi.org/10.5155/eurjchem.7.2.176-181.1391

Refbacks

  • There are currently no refbacks.




Copyright (c)




© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.