European Journal of Chemistry 2016, 7(2), 248-270. doi:10.5155/eurjchem.7.2.248-270.1412

Recent advance in direct sp3 carbon-hydrogen bond functionalizations


Xiao-Hua Cai (1,*) , Jun Jin (2) , Bing Xie (3)

(1) National School of Medicine, Guizhou Minzhu University, Guiyang 550025, China
(2) National School of Medicine, Guizhou Minzhu University, Guiyang 550025, China
(3) National School of Medicine, Guizhou Minzhu University, Guiyang 550025, China
(*) Corresponding Author

Received: 20 Feb 2016, Accepted: 19 Mar 2016, Published: 30 Jun 2016

Abstract


Direct and selective carbon-hydrogen bond functionalization has attracted enormous attention because it provides more efficient strategies for preparing valuable functional molecules from easily available substrates. Significant and exciting developments in functionalization of un-activation Csp3-H bonds have continuously been made over the past few decades. This review mainly summarizes recent advances on direct Csp3-H bond functionalization for the formation of C-C and C-heteroatom bond under transition-metal-catalysed and metal-free conditions.


Keywords


Metal-free; C-H bond activation; C-C bond formation; Transition-metal-catalyzed; C-heteroatom bond formation; Csp3-H bond functionalization

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.7.2.248-270.1412

Article Metrics


This Abstract was viewed 1359 times | PDF Article downloaded 323 times

Citations

/


[1]. Zhengwei Yu, Saisai Zhang, Zengming Shen
Copper-Mediated Cyanation of Aryl C-H Bond with Removable Bidenate Auxiliary Using Acetonitrile as the Cyano Source
Chinese Journal of Chemistry  36(12), 1139, 2018
DOI: 10.1002/cjoc.201800334
/


[2]. Alexander Breder, Christian Depken
Light-Driven Single-Electron Transfer Processes as an Enabling Principle in Sulfur and Selenium Multicatalysis
Angewandte Chemie International Edition  , , 2019
DOI: 10.1002/anie.201812486
/


[3]. Catherine A. Moulder, Thomas R. Cundari
5d Metal(IV) Imide Complexes. The Impact (or Lack Thereof) of d-Orbital Occupation on Methane Activation and Functionalization
Inorganic Chemistry  56(4), 1823, 2017
DOI: 10.1021/acs.inorgchem.6b02157
/


[4]. Alexander Breder, Christian Depken
Lichtgetriebene Ein‐Elektronen‐Transferprozesse als Funktionsprinzip in der Schwefel‐ und Selen‐Multikatalyse
Angewandte Chemie  , , 2019
DOI: 10.1002/ange.201812486
/


References

[1]. Borovik, A. S. Chem. Soc. Rev. 2011, 40, 1870-1874.
http://dx.doi.org/10.1039/c0cs00165a

[2]. Gutekunst, W. R.; Baran, P. S. Chem. Soc. Rev. 2011, 40, 1976-1991.
http://dx.doi.org/10.1039/c0cs00182a

[3]. Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068-5083.
http://dx.doi.org/10.1039/c1cs15082k

[4]. Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem. Int. Ed. 2012, 51, 8960-9009.
http://dx.doi.org/10.1002/anie.201201666

[5]. Wencel-Delord, J.; Glorius, F. Angew. Chem. Int. Ed. 2012, 51, 10236-10254.
http://dx.doi.org/10.1002/anie.201203269

[6]. Kuhl, N.; Hoplinson, M. N.; Chen, D. Y. K.; Youn, S. W. Chem. Eur. J. 2012, 18, 9452-9474.
http://dx.doi.org/10.1002/chem.201201329

[7]. Gao, K.; Yoshikai, N. Acc. Chem. Res. 2014, 47, 1208-1219.
http://dx.doi.org/10.1021/ar400270x

[8]. Wencel-Delord, J.; Glorius, F. Nat. Chem. 2013, 5, 369-375.
http://dx.doi.org/10.1038/nchem.1607

[9]. Li, B.; Dixneuf, P. H. Chem. Soc. Rev. 2013, 42, 5744-5767.
http://dx.doi.org/10.1039/c3cs60020c

[10]. Sarkar, S. D.; Liu, W.; Kozhushkov, S. I.; Ackermann, L. Adv. Synth. Catal. 2014, 356, 1461-1479.
http://dx.doi.org/10.1002/adsc.201400110

[11]. Cai, X. H. Xie, B. Curr. Org. Chem. 2015, 19, 121-150.
http://dx.doi.org/10.2174/1385272819666141027230851

[12]. Cai, X. H. Xie, B. Synthesis 2015, 47, 737-759.
http://dx.doi.org/10.1055/s-0034-1379720

[13]. Cai, X. H. Xie, B. Arkivoc 2015, 1, 184-210.

[14]. Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780-1824.
http://dx.doi.org/10.1021/cr100379j

[15]. Engle, K. M.; Mei, T. S.; Wasa, M.; Yu, J. Q. Acc. Chem. Res. 2011, 45, 788-802.
http://dx.doi.org/10.1021/ar200185g

[16]. Davies, H. M. L.; Morton, D. Chem. Soc. Rev. 2011, 40, 1857-1869.
http://dx.doi.org/10.1039/c0cs00217h

[17]. Zhang, S. Y.; Zhang, F. M.; Tu, Y. Q. Chem. Soc. Rev. 2011, 40, 1937-1949.
http://dx.doi.org/10.1039/c0cs00063a

[18]. Newhouse, T.; Baran, P. S. Angew. Chem., Int. Ed. 2011, 50, 3362-3374.
http://dx.doi.org/10.1002/anie.201006368

[19]. White, M. C. Science, 2012, 335, 807-809.
http://dx.doi.org/10.1126/science.1207661

[20]. Roizen, J. L.; Harvey, M. E.; Du, B. J. Acc. Chem. Res. 2012, 45, 911-922.
http://dx.doi.org/10.1021/ar200318q

[21]. Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464-3484.
http://dx.doi.org/10.1039/c2cs15323h

[22]. Rouquet, G.; Chatani, N. Angew. Chem. Int. Ed. 2013, 52, 11726-11743.
http://dx.doi.org/10.1002/anie.201301451

[23]. Girard, S. A.; Knauber, T.; Li, C. J. Angew. Chem. Int. Ed. 2014, 53, 74-100.
http://dx.doi.org/10.1002/anie.201304268

[24]. Zhang, W.; Wang, N. X.; Xing, Y. Synlett. 2015, 26, 2088-2098.
http://dx.doi.org/10.1055/s-0034-1381031

[25]. Vachhani, D. D.; Galli, M.; Jacobs, J.; Meervelt, L. V.; Der Eycken, E, V. V. Chem. Commun. 2013, 49, 7171-7173.
http://dx.doi.org/10.1039/c3cc43418d

[26]. Zhang, G.; Ma, Y. X.; Cheng, G. B.; Liu, D. B.; Wang, R. Org. Lett. 2014, 16, 656-659.
http://dx.doi.org/10.1021/ol500045p

[27]. Ma, Y. H.; Zhang, S. A.; Yang, S. P.; Song, F. J.; You, J. S. Angew. Chem. 2014, 126, 8004-8008.
http://dx.doi.org/10.1002/ange.201402475

[28]. Xie, J.; Shi, S.; Zhang, T.; Mehrkens, N.; Rudolph, M. A.; Hashmi S. K. Angew. Chem. Int. Ed. 2015, 54, 6046-6050.
http://dx.doi.org/10.1002/anie.201412399

[29]. Sundararaju, B.; Achard, M.; Sharma, G. V. M.; Bruneau, C. J. Am. Chem. Soc. 2011, 133, 10340-10344.
http://dx.doi.org/10.1021/ja203875d

[30]. Piou, T.; Neuville, L.; Zhu, J. P. Angew. Chem. 2012, 124, 11729-11733.
http://dx.doi.org/10.1002/ange.201206267

[31]. Zhang, L.; Peng, C.; Zhao, D.; Wang, Y.; Fu, H. J.; Shen, Q.; Li, J. X. Chem. Commun. 2012, 48, 5928-5930.
http://dx.doi.org/10.1039/c2cc32009f

[32]. Li, Z. J.; Zhang, Y.; Zhang, L. Z.; Liu, Z. Q. Org. Lett. 2014, 16, 382-385.
http://dx.doi.org/10.1021/ol4032478

[33]. Gharpure, S. J.; Shelke, Y. G.; Reddy, S. R. B. RSC Adv. 2014, 4, 46962-46965.
http://dx.doi.org/10.1039/C4RA08421G

[34]. Yan, J. X.; Li, H.; Liu, X. W.; Shi, J. L.; Wang, X.; Shi, Z. J. Angew. Chem. 2014, 126, 5045-5049.
http://dx.doi.org/10.1002/ange.201402562

[35]. Zhang, Q.; Yin, X. S.; Zhao, S.; Fang, S. L.; Shi, B. F. Chem. Commun. 2014, 50, 8353-8355.
http://dx.doi.org/10.1039/c4cc03615h

[36]. Kulago, A. A.; Van Steijvoort, B. F.; Mitchell, E. A.; Meerpoel, L.; Maes, B. U. W. Adv. Synth. Catal. 2014, 356, 1610-1618.
http://dx.doi.org/10.1002/adsc.201400117

[37]. Yan, H.; Lu, L. H.; Rong, G. W.; Liu, D. F.; Zheng, Y.; Chen, J.; Mao, J. C. J. Org. Chem. 2014, 79, 7103-7111.
http://dx.doi.org/10.1021/jo501274f

[38]. Yang, X. H.; Wei, W. T.; Li, H. B.; Song, R. J.; Li, J. H. Chem. Commun. 2014, 50, 12867-12869.
http://dx.doi.org/10.1039/C4CC05051G

[39]. Peng, J.; Chen, C.; Chen, J. J.; Su, X.; Xi, C. J.; Chen, H. C. Org. Lett. 2014, 16, 3776-3779.
http://dx.doi.org/10.1021/ol501655g

[40]. Cheng, J. K.; Loh, T. P. J. Am. Chem. Soc. 2015, 137, 42-45.
http://dx.doi.org/10.1021/ja510635k

[41]. Pan, C. D.; Zhang, H. L.; Zhu, C. J. Org. Biomol. Chem. 2015, 13, 361-364.
http://dx.doi.org/10.1039/C4OB02172J

[42]. Wang, Y. X.; Peng, F. F.; Liu, J.; Huo, C. D.; Wang, X. C.; Jia, X. D. J. Org. Chem. 2015, 80, 609-614.
http://dx.doi.org/10.1021/jo502184k

[43]. Muramatsu, W.; Nakano, K. Org. Lett. 2015, 17, 1549-1552.
http://dx.doi.org/10.1021/acs.orglett.5b00434

[44]. He, J.; Takise, R.; Fu, H. Y.; Yu, J. Q. J. Am. Chem. Soc. 2015, 137, 4618-4621.
http://dx.doi.org/10.1021/jacs.5b00890

[45]. Guo, S. R.; Yuan, Y. Q.; Xiang, J. N. New J. Chem. 2015, 39, 3093-3097.
http://dx.doi.org/10.1039/C4NJ02416H

[46]. Zhang, G. F.; Xie, X. Q.; Zhu, J. F.; Li, S. S.; Ding, C. R.; Ding, P. Org. Biomol. Chem. 2015, 13, 5444-5449.
http://dx.doi.org/10.1039/C5OB00066A

[47]. Liu, Y. J.; Zhang, Z. Z.; Yan, S. Y.; Liu, Y. H.; Shi. B. F. Chem. Commun. 2015, 51, 7899-7902.
http://dx.doi.org/10.1039/C5CC02254A

[48]. Li, L.; Xia, X. H.; Wang, Y.; Bora, P. P.; Kang, Q. Adv. Synth. Catal. 2015, 357, 2089-2097.
http://dx.doi.org/10.1002/adsc.201500396

[49]. Mitsudera, H.; Li, C. J. Tetrahedron Lett. 2011, 52, 1898-1900.
http://dx.doi.org/10.1016/j.tetlet.2011.02.038

[50]. Liu, J. M.; Yi, H.; Zhang, X.; Liu, C.; Liu, R.; Zhang, G. T.; Lei, A. W. Chem. Commun. 2014, 50, 7636-7638.
http://dx.doi.org/10.1039/c4cc02275k

[51]. Li, W. P.; Zhu, X. B.; Mao, H. B.; Tang, Z. H.; Cheng, Y. X.; Zhu, C. J. Chem. Commun. 2014, 50, 7521-7523.
http://dx.doi.org/10.1039/c4cc02768j

[52]. Pedroni, J.; Boghi, M.; Saget, T.; Cramer, N. Angew. Chem. Int. Ed. 2014, 53, 9064-9067.
http://dx.doi.org/10.1002/anie.201405508

[53]. Curto, J. M.; Kozlowski, M. C. J. Am. Chem. Soc. 2015, 137, 18-21.
http://dx.doi.org/10.1021/ja5093166

[54]. Zhou, L. L.; Tang, S.; Qi, X. T.; Lin, C. T.; Liu, K.; Liu, C.; Lan, Y.; Lei, A. W. Org. Lett. 2014, 16, 3404-3407.
http://dx.doi.org/10.1021/ol501485f

[55]. Wang, N. C.; Li, R. H.; Li, L. B.; Xu, S. S.; Song, H. B.; Wang, B. Q. J. Org. Chem. 2014, 79, 5379-5385.
http://dx.doi.org/10.1021/jo5008515

[56]. Zhu, Z. Q.; Wang, T. T.; Bai, P.; Huang, Z. Z. Org. Biomol. Chem. 2014, 12, 5839-5842.
http://dx.doi.org/10.1039/C4OB01256A

[57]. Wu, X. S.; Zhao, Y.; Ge, H. B. Chem. Eur. J. 2014, 20, 9530-9533.
http://dx.doi.org/10.1002/chem.201403356

[58]. Chen, X. L.; Chen, T. Q.; Ji, F. Y.; Zhou, Y. B.; Yin. S. F. Catal. Sci. Technol. 2015, 5, 2197-2202.
http://dx.doi.org/10.1039/C4CY01618A

[59]. He, J.; Shigenari, T.; Yu, J. Q. Angew. Chem. Int. Ed. 2015, 54, 6545-6549.
http://dx.doi.org/10.1002/anie.201502075

[60]. Zhao, J. C.; Fang, H.; Zhou, W.; Han, J. L.; Pan, Y. J. Org. Chem. 2014, 79, 3847-3855.
http://dx.doi.org/10.1021/jo500192h

[61]. Luo, X. Y.; Wang, Z. L.; Jin, J. H.; An, X. L.; Shen, Z. L.; Deng, W. P. C. Tetrahedron 2014, 70, 8226-8230.
http://dx.doi.org/10.1016/j.tet.2014.09.031

[62]. Chen, C.; Xu, X. H.; Yang, B.; Qing, F. L. Org. Lett. 2014, 16, 3372-3375.
http://dx.doi.org/10.1021/ol501400u

[63]. Lin, C.; Yu, W. L.; Yao, J. Z.; Wang, B. J.; Liu, Z. X.; Zhang, Y. H. Org. Lett. 2015, 17, 1340-1343.
http://dx.doi.org/10.1021/acs.orglett.5b00471

[64]. Chen, D. F.; Han, Z. Y.; He, Y. P.; Yu, J.; Gong, L. Z. Angew. Chem. 2012, 51, 12307-23310.
http://dx.doi.org/10.1002/anie.201205062

[65]. Zhang, G.; Wang, S. L.; Ma, Y. X.; Kong, W. D.; Wang, R. Adv. Synth. Catal. 2013, 355, 874-879.
http://dx.doi.org/10.1002/adsc.201200731

[66]. Cao, J. J.; Zhu, T. H.; Wang, S. Y.; Gu, Z. Y.; Wang, X.; Ji, S. J. Chem. Commun. 2014, 50, 6439-6442.
http://dx.doi.org/10.1039/c4cc00743c

[67]. Xie, Z. Y.; Liu, L.; Chen, W. F.; Zheng, H. B. Xu, Q. Q.; Yuan, H. Q.; Lou, H. X. Angew. Chem. 2014, 126, 3985-3989.
http://dx.doi.org/10.1002/ange.201310193

[68]. Shao, Z. Z.; Wang, L.; Xu, L. B.; Zhao, H. L.; Xiao, J. RSC Adv. 2014, 4, 53188-53191.
http://dx.doi.org/10.1039/C4RA09338K

[69]. Wang, X. H.; Wang, Y.; Yuan, Y.; Xing, C. H. Tetrahedron 2014, 70, 2195-2202.
http://dx.doi.org/10.1016/j.tet.2014.01.033

[70]. Hu, W.; Lin, J. P.; Song, L. R.; Long, Y. Q. Org. Lett. 2015, 17, 1268-1271.
http://dx.doi.org/10.1021/acs.orglett.5b00248

[71]. Zhao, J. C.; Fang, H.; Song, R. C.; Zhou, J.; Han, J. L.; Pan, Y. Chem. Commun. 2015, 51, 599-602.
http://dx.doi.org/10.1039/C4CC07654K

[72]. Gao, Q. H.; Fei, Z.; Zhu, Y. P.; Lian, M.; Jia, F. C.; Liu, M. C.; She, N. F.; Wu, A. X. Tetrahedron 2013, 69, 22-28.
http://dx.doi.org/10.1016/j.tet.2012.10.072

[73]. Kalmode, H. P.; Vadagaonkar, K. S.; Chaskar, A. C. RSC Adv. 2014, 4, 60316-60326.
http://dx.doi.org/10.1039/C4RA07556K

[74]. Rajeshkumar, V.; Chandrasekar, S.; Sekar, G. Org. Biomol. Chem. 2014, 12, 8512-8518.
http://dx.doi.org/10.1039/C4OB01564A

[75]. Zhang, X. S.; Wang, M.; Li, P. H.; Wang, L. Chem. Commun. 2014, 50, 8006-8009.
http://dx.doi.org/10.1039/c4cc01189a

[76]. Dian, L. Y.; Wang, S. S.; Zhang-Negrerie, D.; Du, Y. F.; Zhao, K. Chem. Commun. 2014, 50, 11738-11741.
http://dx.doi.org/10.1039/C4CC05758A

[77]. Zhang, N. N.; Cheng, R.; Zhang-Negrerie, D.; Du, Y. F.; Zhao, K. J. Org. Chem. 2014, 79, 10581-10587.
http://dx.doi.org/10.1021/jo5016823


How to cite


Cai, X.; Jin, J.; Xie, B. Eur. J. Chem. 2016, 7(2), 248-270. doi:10.5155/eurjchem.7.2.248-270.1412
Cai, X.; Jin, J.; Xie, B. Recent advance in direct sp3 carbon-hydrogen bond functionalizations. Eur. J. Chem. 2016, 7(2), 248-270. doi:10.5155/eurjchem.7.2.248-270.1412
Cai, X., Jin, J., & Xie, B. (2016). Recent advance in direct sp3 carbon-hydrogen bond functionalizations. European Journal of Chemistry, 7(2), 248-270. doi:10.5155/eurjchem.7.2.248-270.1412
Cai, Xiao-Hua, Jun Jin, & Bing Xie. "Recent advance in direct sp3 carbon-hydrogen bond functionalizations." European Journal of Chemistry [Online], 7.2 (2016): 248-270. Web. 22 Sep. 2019
Cai, Xiao-Hua, Jin, Jun, AND Xie, Bing. "Recent advance in direct sp3 carbon-hydrogen bond functionalizations" European Journal of Chemistry [Online], Volume 7 Number 2 (30 June 2016)

DOI Link: https://doi.org/10.5155/eurjchem.7.2.248-270.1412

Refbacks

  • There are currently no refbacks.




Copyright (c)




© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.