European Journal of Chemistry 2017, 8(3), 288-292 | doi: https://doi.org/10.5155/eurjchem.8.3.288-292.1561 | Get rights and content

Issue cover





  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

C-C and C-H bond cleavage reactions in the chrysene and perylene aromatic molecules: An ab-initio density functional theory study


Muthana Abduljabbar Shanshal (1,*) , Qhatan Adnan Yusuf (2)

(1) Department of Chemistry, College of Science, University of Baghdad, Jadirriya, Baghdad, 00964-01, Iraq
(2) Department of Chemistry, College of Science, University of Baghdad, Jadirriya, Baghdad, 00964-01, Iraq
(*) Corresponding Author

Received: 07 Mar 2017 | Accepted: 05 Aug 2017 | Published: 30 Sep 2017 | Issue Date: September 2017

Abstract


The ab-initio DFT (B3LYP) method is applied for the study of C-C and C-H bond cleavage reactions in chrysene and perylene aromatic molecules. It is found that, the C-C bond cleavage proceeds via a singlet aromatic transition state, compelled through a disrotatoric ring opening reaction. A suprafacial H atom shift follows the transition state in some of these reactions, where the formation of a methylene -CH2,acetylenyl-, allenyl- or butadienyl- moiety in the final product is possible. Activation energies are calculated for the ring opening and show the following values; for chrysene, 136.97-197.69 kcal/mol and for perylene, 160.87-187.33 kcal/mol. The reaction energies range from 95.57-162.42 kcal/mol for chrysene and 98.12-168.28 kcal/mol for perylene. The calculated cleavage reaction energies for all C-H bonds in both molecules are almost similar, 116-117 kcal/mol. Their activation energies however are different, for chrysene they range from 148.57-154.97 kcal/mol and for perylene 148.30-162.73 kcal/mol.


Keywords


DFT; B3LYP; Perylene; Chrysene; Reaction paths; C-C and C-H bond cleavage

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.8.3.288-292.1561

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 977 times | icon graph PDF Article downloaded 287 times


Citations

/


[1]. Muthana Abduljabbar Shanshal, Qhatan Adnan Yusuf
C-C and C-H bond cleavage reactions in acenaphthylene aromatic molecule, an ab-initio density functional theory study
European Journal of Chemistry  10(4), 403, 2019
DOI: 10.5155/eurjchem.10.4.403-408.1889
/


[2]. V. Shumakova, E. Schubert, T. Balčiūnas, M. Matthews, S. Ališauskas, D. Mongin, A. Pugžlys, J. Kasparian, A. Baltuška, J.-P. Wolf
Laser induced aerosol formation mediated by resonant excitation of volatile organic compounds
Optica  8(10), 1256, 2021
DOI: 10.1364/OPTICA.434659
/


References


[1]. Shanshal, M.; Hadi, H. Proceeding of the 6thJordanien International Conference of Chemistry, Irbid, Jordan, 2011.

[2]. Shanshal, M.; Hadi, H. Jordan J. Chem. 2012, 7, 329-337.

[3]. Shanshal, M.; Muala, M. M. Jordan J. Chem. 2011, 6(2), 165-173.

[4]. Shanshal, M.; Muala, M. M. Jordan J. Chem. 2013, 8, 113-124.

[5]. Shanshal, M.; Muala, M. M.; Al-Yassiri, M. A. Jordan J. Chem. 2013, 8, 213-224.

[6]. Al-Yassiri, M.; Shanshal, M. Eur. J. Chem. 2015, 6(3), 261-269.
https://doi.org/10.5155/eurjchem.6.3.261-269.1239

[7]. Shanshal, M.; Al‐Yassiri, M.; Yusof, Q. Eur. J. Chem. 2016, 7(2), 166‐175.
https://doi.org/10.5155/eurjchem.7.2.166-175.1364

[8]. Dewar, M. J. S. The Molecular Orbital Theory of Organic Chemistry, McGraw-Hill, N. York, 1969, pp. 169-190.

[9]. Ren, R. L.; Itoh, H.; Ouchi, K. Fuel 1989, 68, 58-65
https://doi.org/10.1016/0016-2361(89)90012-4

[10]. Ninomiza, Y. D.; Suzuki, Z. Y. Fuel 2000, 79, 449-457.
https://doi.org/10.1016/S0016-2361(99)00180-5

[11]. Guerrin, M. R. Energy Sources of Polycyclic Aromatic Hydrocarbons, in Polycyclic Hydrocarbons and Cancer, Academic Press Inc. N. York, 1978.

[12]. Luch, A. The Carcinogenic Effects of Polycyclic Aromatic Hydro carbons, Imperial College Press, Singapore, 2005.
https://doi.org/10.1142/p306

[13]. Frenklach, M.; Wang, H. Proc. Combust. Inst. 1991, 23, 1559-1566.
https://doi.org/10.1016/S0082-0784(06)80426-1

[14]. Frenklach, M.; Moriatry, N. W.; Brown, N. Proc. Combust. Inst. 1998, 27, 1655-1661.
https://doi.org/10.1016/S0082-0784(98)80004-0

[15]. Ling, Y.; Martin, J. M. L.; Lifschitz, C. J. Phys. Chem. A 1997, 101, 219-226.
https://doi.org/10.1021/jp962584q

[16]. Mebel, A. M.; Lin, S. H.; Yang, X. M.; Lee, Y. T. J. Phys. Chem. A 1997, 101, 6781-6789.
https://doi.org/10.1021/jp970596l

[17]. Boehm, H.; Jander, H. Phys. Chem. Chem. Phys. 1999, 1, 3775-3781.
https://doi.org/10.1039/a903306h

[18]. May, K.; Dopperich, S.; Furda, F.; Untereiner, B. V.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2000, 2, 5084-5088.
https://doi.org/10.1039/b005595f

[19]. Untereiner, B. V.; Sierka, M.; Ahlrichs, R. Phys. Chem. Chem Phys. 2004, 6, 4377-4384.
https://doi.org/10.1039/b407279k

[20]. Harvey, R.G. Polycyclic Aromatic Hydrocarbons; Chemistry and Carcinogenity, Cambridge University Press Cambridge, 1991.

[21]. Harvey, R.G. Polycyclic Aromatic Hydrocarbons, Wiley-VCH, New York, 1997.

[22]. Roothaan, C.C. J. Rev. Mod. Phys. 1951, 23, 69-89.
https://doi.org/10.1103/RevModPhys.23.69

[23]. Kohn, W.; Sham, L. J. Phys. Rev. A 1965, 140, 1133-1138.
https://doi.org/10.1103/PhysRev.140.A1133

[24]. Hohenberg, P. Kohn, W. Phys. Rev. 1964, 136, 864-871.
https://doi.org/10.1103/PhysRev.136.B864

[25]. Becke, A. D. Phys. Rev. A 1988, 38, 3098-3001.
https://doi.org/10.1103/PhysRevA.38.3098

[26]. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
https://doi.org/10.1103/PhysRevB.37.785

[27]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; P. Hratchian, H.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; Gaussian, Inc. Pittsburgh, PA, 2003.

[28]. Bischof, P. Heidelberg, private communication.


How to cite


Shanshal, M.; Yusuf, Q. Eur. J. Chem. 2017, 8(3), 288-292. doi:10.5155/eurjchem.8.3.288-292.1561
Shanshal, M.; Yusuf, Q. C-C and C-H bond cleavage reactions in the chrysene and perylene aromatic molecules: An ab-initio density functional theory study. Eur. J. Chem. 2017, 8(3), 288-292. doi:10.5155/eurjchem.8.3.288-292.1561
Shanshal, M., & Yusuf, Q. (2017). C-C and C-H bond cleavage reactions in the chrysene and perylene aromatic molecules: An ab-initio density functional theory study. European Journal of Chemistry, 8(3), 288-292. doi:10.5155/eurjchem.8.3.288-292.1561
Shanshal, Muthana, & Qhatan Adnan Yusuf. "C-C and C-H bond cleavage reactions in the chrysene and perylene aromatic molecules: An ab-initio density functional theory study." European Journal of Chemistry [Online], 8.3 (2017): 288-292. Web. 19 Oct. 2021
Shanshal, Muthana, AND Yusuf, Qhatan. "C-C and C-H bond cleavage reactions in the chrysene and perylene aromatic molecules: An ab-initio density functional theory study" European Journal of Chemistry [Online], Volume 8 Number 3 (30 September 2017)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.8.3.288-292.1561

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2017, 8(3), 288-292 | doi: https://doi.org/10.5155/eurjchem.8.3.288-292.1561 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c)





© Copyright 2010 - 2021  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2021 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.