European Journal of Chemistry 2017, 8(3), 288-292. doi:10.5155/eurjchem.8.3.288-292.1561

C-C and C-H bond cleavage reactions in the chrysene and perylene aromatic molecules: An ab-initio density functional theory study


Muthana Abduljabbar Shanshal (1,*) , Qhatan Adnan Yusuf (2)

(1) Department of Chemistry, College of Science, University of Baghdad, Jadirriya, Baghdad, 00964-01, Iraq
(2) Department of Chemistry, College of Science, University of Baghdad, Jadirriya, Baghdad, 00964-01, Iraq
(*) Corresponding Author

Received: 07 Mar 2017, Accepted: 05 Aug 2017, Published: 30 Sep 2017

Abstract


The ab-initio DFT (B3LYP) method is applied for the study of C-C and C-H bond cleavage reactions in chrysene and perylene aromatic molecules. It is found that, the C-C bond cleavage proceeds via a singlet aromatic transition state, compelled through a disrotatoric ring opening reaction. A suprafacial H atom shift follows the transition state in some of these reactions, where the formation of a methylene -CH2,acetylenyl-, allenyl- or butadienyl- moiety in the final product is possible. Activation energies are calculated for the ring opening and show the following values; for chrysene, 136.97-197.69 kcal/mol and for perylene, 160.87-187.33 kcal/mol. The reaction energies range from 95.57-162.42 kcal/mol for chrysene and 98.12-168.28 kcal/mol for perylene. The calculated cleavage reaction energies for all C-H bonds in both molecules are almost similar, 116-117 kcal/mol. Their activation energies however are different, for chrysene they range from 148.57-154.97 kcal/mol and for perylene 148.30-162.73 kcal/mol.


Keywords


DFT; B3LYP; Perylene; Chrysene; Reaction paths; C-C and C-H bond cleavage

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.8.3.288-292.1561

Article Metrics


This Abstract was viewed 456 times | PDF Article downloaded 116 times

References

[1]. Shanshal, M.; Hadi, H. Proceeding of the 6thJordanien International Conference of Chemistry, Irbid, Jordan, 2011.

[2]. Shanshal, M.; Hadi, H. Jordan J. Chem. 2012, 7, 329-337.

[3]. Shanshal, M.; Muala, M. M. Jordan J. Chem. 2011, 6(2), 165-173.

[4]. Shanshal, M.; Muala, M. M. Jordan J. Chem. 2013, 8, 113-124.

[5]. Shanshal, M.; Muala, M. M.; Al-Yassiri, M. A. Jordan J. Chem. 2013, 8, 213-224.

[6]. Al-Yassiri, M.; Shanshal, M. Eur. J. Chem. 2015, 6(3), 261-269.
https://doi.org/10.5155/eurjchem.6.3.261-269.1239

[7]. Shanshal, M.; Al‐Yassiri, M.; Yusof, Q. Eur. J. Chem. 2016, 7(2), 166‐175.
https://doi.org/10.5155/eurjchem.7.2.166-175.1364

[8]. Dewar, M. J. S. The Molecular Orbital Theory of Organic Chemistry, McGraw-Hill, N. York, 1969, pp. 169-190.

[9]. Ren, R. L.; Itoh, H.; Ouchi, K. Fuel 1989, 68, 58-65
https://doi.org/10.1016/0016-2361(89)90012-4

[10]. Ninomiza, Y. D.; Suzuki, Z. Y. Fuel 2000, 79, 449-457.
https://doi.org/10.1016/S0016-2361(99)00180-5

[11]. Guerrin, M. R. Energy Sources of Polycyclic Aromatic Hydrocarbons, in Polycyclic Hydrocarbons and Cancer, Academic Press Inc. N. York, 1978.

[12]. Luch, A. The Carcinogenic Effects of Polycyclic Aromatic Hydro carbons, Imperial College Press, Singapore, 2005.
https://doi.org/10.1142/p306

[13]. Frenklach, M.; Wang, H. Proc. Combust. Inst. 1991, 23, 1559-1566.
https://doi.org/10.1016/S0082-0784(06)80426-1

[14]. Frenklach, M.; Moriatry, N. W.; Brown, N. Proc. Combust. Inst. 1998, 27, 1655-1661.
https://doi.org/10.1016/S0082-0784(98)80004-0

[15]. Ling, Y.; Martin, J. M. L.; Lifschitz, C. J. Phys. Chem. A 1997, 101, 219-226.
https://doi.org/10.1021/jp962584q

[16]. Mebel, A. M.; Lin, S. H.; Yang, X. M.; Lee, Y. T. J. Phys. Chem. A 1997, 101, 6781-6789.
https://doi.org/10.1021/jp970596l

[17]. Boehm, H.; Jander, H. Phys. Chem. Chem. Phys. 1999, 1, 3775-3781.
https://doi.org/10.1039/a903306h

[18]. May, K.; Dopperich, S.; Furda, F.; Untereiner, B. V.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2000, 2, 5084-5088.
https://doi.org/10.1039/b005595f

[19]. Untereiner, B. V.; Sierka, M.; Ahlrichs, R. Phys. Chem. Chem Phys. 2004, 6, 4377-4384.
https://doi.org/10.1039/b407279k

[20]. Harvey, R.G. Polycyclic Aromatic Hydrocarbons; Chemistry and Carcinogenity, Cambridge University Press Cambridge, 1991.

[21]. Harvey, R.G. Polycyclic Aromatic Hydrocarbons, Wiley-VCH, New York, 1997.

[22]. Roothaan, C.C. J. Rev. Mod. Phys. 1951, 23, 69-89.
https://doi.org/10.1103/RevModPhys.23.69

[23]. Kohn, W.; Sham, L. J. Phys. Rev. A 1965, 140, 1133-1138.
https://doi.org/10.1103/PhysRev.140.A1133

[24]. Hohenberg, P. Kohn, W. Phys. Rev. 1964, 136, 864-871.
https://doi.org/10.1103/PhysRev.136.B864

[25]. Becke, A. D. Phys. Rev. A 1988, 38, 3098-3001.
https://doi.org/10.1103/PhysRevA.38.3098

[26]. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
https://doi.org/10.1103/PhysRevB.37.785

[27]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; P. Hratchian, H.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; Gaussian, Inc. Pittsburgh, PA, 2003.

[28]. Bischof, P. Heidelberg, private communication.


How to cite


Shanshal, M.; Yusuf, Q. Eur. J. Chem. 2017, 8(3), 288-292. doi:10.5155/eurjchem.8.3.288-292.1561
Shanshal, M.; Yusuf, Q. C-C and C-H bond cleavage reactions in the chrysene and perylene aromatic molecules: An ab-initio density functional theory study. Eur. J. Chem. 2017, 8(3), 288-292. doi:10.5155/eurjchem.8.3.288-292.1561
Shanshal, M., & Yusuf, Q. (2017). C-C and C-H bond cleavage reactions in the chrysene and perylene aromatic molecules: An ab-initio density functional theory study. European Journal of Chemistry, 8(3), 288-292. doi:10.5155/eurjchem.8.3.288-292.1561
Shanshal, Muthana, & Qhatan Adnan Yusuf. "C-C and C-H bond cleavage reactions in the chrysene and perylene aromatic molecules: An ab-initio density functional theory study." European Journal of Chemistry [Online], 8.3 (2017): 288-292. Web. 18 Sep. 2019
Shanshal, Muthana, AND Yusuf, Qhatan. "C-C and C-H bond cleavage reactions in the chrysene and perylene aromatic molecules: An ab-initio density functional theory study" European Journal of Chemistry [Online], Volume 8 Number 3 (30 September 2017)

DOI Link: https://doi.org/10.5155/eurjchem.8.3.288-292.1561

Refbacks

  • There are currently no refbacks.




Copyright (c)




© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.