European Journal of Chemistry 2017, 8(3), 203-210 | doi: https://doi.org/10.5155/eurjchem.8.3.203-210.1574 | Get rights and content

Issue cover





  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Two spectrophotometric methods for the determination of azithromycin and roxithromycin in pharmaceutical preparations


Fawzia Ahmed Ibrahim (1) , Mary Elias Kamel Wahba (2) , Galal Magdy Galal (3,*)

(1) Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt
(2) Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt
(3) Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 35712, Egypt
(*) Corresponding Author

Received: 19 Apr 2017 | Revised: 16 May 2017 | Accepted: 30 May 2017 | Published: 30 Sep 2017 | Issue Date: September 2017

Abstract


Two new and simple spectrophotometric procedures have been proposed and validated for estimation of two important macrolide antibiotics namely, azithromycin dihydrate and roxithromycin. Method I depends on complex formation between any of the two drugs and copper in acidic medium where the absorbances of the produced complexes are measured at 250 and 264 nm with linearity ranges of 1.0-100.0 and 2.0-130.0 µg/mL for the two drugs, respectively. Method II depends on the reaction of these drugs with N-bromosuccinimide forming a product which is yellow colored, measured at 264 and 278 nm, with linearity ranges of 2.0-140.0 and 3.0-160.0 µg/mL for azithromycin dihydrate and roxithromycin, respectively. The proposed methods were subjected to detailed validation procedure; moreover they were used for the estimation of the concerned drugs in their different dosage forms. Study of the reactions stoichiometry was carried out; furthermore, a reaction mechanism proposal was presented.


Keywords


Macrolides; Azithromycin; Metal complex; Roxithromycin; Spectrophotometry; N-Bromosuccinimide

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.8.3.203-210.1574

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 1300 times | icon graph PDF Article downloaded 342 times


Citations

/


[1]. Saied Jafari, Mohammad Dehghani, Navid Nasirizadeh, Mostafa Azimzadeh
An azithromycin electrochemical sensor based on an aniline MIP film electropolymerized on a gold nano urchins/graphene oxide modified glassy carbon electrode
Journal of Electroanalytical Chemistry  829, 27, 2018
DOI: 10.1016/j.jelechem.2018.09.053
/


[2]. Ning Yuan, Jia Chen, Hang Zhou, Mohammad Chand Ali, Ming Guan, Hongdeng Qiu
Nitrogen-doping to enhance the separation selectivity of glucose-based carbon dots-modified silica stationary phase for hydrophilic interaction chromatography
Talanta  218, 121140, 2020
DOI: 10.1016/j.talanta.2020.121140
/


[3]. Dina El Sherbiny, Mary E.K. Wahba
Studying drug-drug interaction through chromatographic analysis of two mixtures offering antimicrobial synergism
Journal of Chromatography B  1104, 1, 2019
DOI: 10.1016/j.jchromb.2018.10.024
/


[4]. Cong Hu, Yuan Zhang, Yu Zhou, Zhi-fei Liu, Qiang Meng, Xue-song Feng
A review of pretreatment and analysis of macrolides in food (Update Since 2010)
Journal of Chromatography A  1634, 461662, 2020
DOI: 10.1016/j.chroma.2020.461662
/


References


[1]. The British Pharmacopoeia, The Stationary Office: London, Electronic version, 2013.

[2]. Sweetman, S. C., Martindale: The Complete Drug Reference, Pharmaceutical Press, London, 2009.

[3]. Yang, Z. Y.; Wang, L.; Tang, X. J. Pharm. Biomed. Anal. 2009, 49(3), 811-815.
https://doi.org/10.1016/j.jpba.2008.12.018

[4]. Ghari, T.; Kobarfard, F.; Mortazavi, S. A. Iran. J. Pharm. Res. 2013, 12, 57-63.

[5]. Choemunng, A.; Na-Bangchang, K. J. Liq. Chromatogr. R. T. 2010, 33(16), 1516-1528.
https://doi.org/10.1080/10826076.2010.489009

[6]. El-Gindy, A.; Attia, K. A.; Nassar, M. W.; Al Abasawi, N. M.; Al-Shabrawi, M. J. AOAC Int. 2011, 94(2), 513-522.

[7]. Xue-Min, Z.; Jie, L.; Juan, G.; Quan-Sheng, Y.; Wen-Yan, W. Die Pharmazie-Int. J. Pharm. Sci. 2007, 62(4), 255-257.

[8]. Shen, Y.; Yin, C.; Su, M.; Tu, J. J. Pharm. Biomed. Anal. 2010, 52(1), 99-104.
https://doi.org/10.1016/j.jpba.2009.12.001

[9]. Chen, L.; Qin, F.; Ma, Y.; Li, F. J. Chromatogr. B. 2007, 855(2), 255-261.
https://doi.org/10.1016/j.jchromb.2007.05.016

[10]. Kulikov, A.; Verushkin, A. Chromatographia 2004, 60(1-2), 33-38.
https://doi.org/10.1365/s10337-004-0346-1

[11]. Almeida, V. G.; Braga, V. S.; Pacheco, W. F.; Cassella, R. J. J. Fluoresc. 2013, 23(1), 31-39.
https://doi.org/10.1007/s10895-012-1111-8

[12]. Suhagia, B.; Shah, S.; Rathod, I.; Patel, H.; Doshi, K. Indian J. Pharm. Sci. 2006, 68(2), 242-245.
https://doi.org/10.4103/0250-474X.25726

[13]. Huakan, L.; Yanqing, Z.; Yuhua, W.; Janfeng, K. Chinese J. Anal. Chem. 2004, 32(5), 598-600.

[14]. Rachidi, M.; Elharti, J.; Digua, K.; Cherrah, Y.; Bouklouze, A. Anal. Lett. 2006, 39(9), 1917-1926.
https://doi.org/10.1080/00032710600721720

[15]. Huang, W.; Liu, X.; Zhao, F. Guang Pu Xue Yu Guang Pu Fen Xi. 2006, 26(5), 913-916.

[16]. Paula, C. E. R. d.; Almeida, V. G.; Cassella, R. J. J. Brazil. Chem. Soc. 2010, 21(9), 1664-1671.

[17]. Shah, V.; Raj, H. Int. J. Pharm. Sci. Res. 2012, 3(6), 1753-1760.

[18]. Qi, M.; Wang, P.; Cong, R.; Yang, J. J. Pharm. Biomed. Anal. 2004, 35(5), 1287-1291.
https://doi.org/10.1016/j.jpba.2004.04.001

[19]. Hang, T. J.; Zhang, M.; Song, M.; Shen, J. P. Clin. Chim. Acta. 2007, 382(1), 20-24.
https://doi.org/10.1016/j.cca.2007.03.015

[20]. Lim, J. H.; Park, B. K.; Yun, H. I. J. Vet. Sci. 2003, 4(1), 35-39.

[21]. Peng, J.; Hu, X. J. Lumin. 2011, 131(5), 952-955.
https://doi.org/10.1016/j.jlumin.2010.12.030

[22]. Glowka, F. K.; Karazniewicz-Lada, M. J. Chromatogr. B. 2007, 852(1), 669-673.
https://doi.org/10.1016/j.jchromb.2007.02.022

[23]. Zhao, G.; Li, H. Guang Pu Xue Yu Guang Pu Fen Xi 2003, 23(1), 157-159.

[24]. Walash, M. I.; Rizk, M. S.; Eid, M. I.; Fathy, M. E. J. AOAC Int. 2007, 90(6), 1579-1587.

[25]. Britton, H. T. S., Hydrogen Ions, Revised and Enlarged. 4th edition, Chapman & Hall, London, 1955.

[26]. Barakat, M.; Mousa, G. J. Pharm. Pharmacol. 1952, 4(1), 115-117.
https://doi.org/10.1111/j.2042-7158.1952.tb13121.x

[27]. Rahman, N.; Haque, S. M.; Azmi, S. N. H.; Rahman, H. J. Saudi Chem. Soc. 2013, 21(1), 25-34.
https://doi.org/10.1016/j.jscs.2013.09.001

[28]. Dunstan, S.; Henbest, H. B. J. Chem. Soc. 1957, 4905-4908.
https://doi.org/10.1039/jr9570004905

[29]. Skoog, D. A.; Holler, F. J.; Crouch, S. R., Principles of Instrumental Analysis, 6th Ed., Thomson Brook/Cole, Canada, 2007.

[30]. ICH Harmonized Tripartite Guideline, Validation of Analytical Procedures: Text and Methodology, Q2 (R1), Current Step 4 Version, Parent Guidelines on Methodology Dated November 6 1996, Incorporated in November [https://www.fda.gov/downloads/ RegulatoryInformation/Guidances/UCM128049.pdf] website (Accessed April 8, 2016).

[31]. Miller, J. N.; Miller, J. C., Statistics and Chemometrics for Analytical Chemistry. Prentice Hall/Pearson, Harlow, England, 2010.

[32]. Rose, J., Advanced physico-chemical experiments: a textbook of practical physical chemistry and calculations. I. Pitman, London, 1964.


How to cite


Ibrahim, F.; Wahba, M.; Galal, G. Eur. J. Chem. 2017, 8(3), 203-210. doi:10.5155/eurjchem.8.3.203-210.1574
Ibrahim, F.; Wahba, M.; Galal, G. Two spectrophotometric methods for the determination of azithromycin and roxithromycin in pharmaceutical preparations. Eur. J. Chem. 2017, 8(3), 203-210. doi:10.5155/eurjchem.8.3.203-210.1574
Ibrahim, F., Wahba, M., & Galal, G. (2017). Two spectrophotometric methods for the determination of azithromycin and roxithromycin in pharmaceutical preparations. European Journal of Chemistry, 8(3), 203-210. doi:10.5155/eurjchem.8.3.203-210.1574
Ibrahim, Fawzia, Mary Elias Kamel Wahba, & Galal Magdy Galal. "Two spectrophotometric methods for the determination of azithromycin and roxithromycin in pharmaceutical preparations." European Journal of Chemistry [Online], 8.3 (2017): 203-210. Web. 1 Dec. 2021
Ibrahim, Fawzia, Wahba, Mary, AND Galal, Galal. "Two spectrophotometric methods for the determination of azithromycin and roxithromycin in pharmaceutical preparations" European Journal of Chemistry [Online], Volume 8 Number 3 (30 September 2017)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.8.3.203-210.1574

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2017, 8(3), 203-210 | doi: https://doi.org/10.5155/eurjchem.8.3.203-210.1574 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c)





© Copyright 2010 - 2021  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2021 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.