European Journal of Chemistry 2017, 8(3), 305-309. doi:10.5155/eurjchem.8.3.305-309.1587

Flame atomic absorption determination of ultra-trace zinc in environmental samples after pre-concentration by solid phase extraction


Mahmood Payehghadr (1,*)

(1) Department of Chemistry, Payame Noor University, P.O. Box 19395-4697, Tehran, Iran
(*) Corresponding Author

Received: 21 May 2017, Accepted: 29 Jul 2017, Published: 30 Sep 2017

Abstract


A simple, reliable and rapid method for pre-concentration and determination of ultra-trace zinc using octadecyl silica membrane disk modified by a new Schiff base ligand, and flame atomic absorption spectrometry is presented. Various parameters including, pH of aqueous solution, flow rates, the amount of ligand and type of stripping solvents were optimized. The breakthrough volume is greater than 1000 mL with an enrichment factor of more than 200 and 120 ng/Ldetection limit. The capacity of the membrane disks modified by 8 mg of the ligand was found to be 260 µg of zinc. The effects of various cationic interferences on percent recovery of zinc ion were studied. The method was successfully applied for the determination of zinc ion in different samples, especially determination of ultra-trace amount of zinc in waters and plants.


Keywords


Zinc; Schiff base; Octadecyl silica disks; Solid phase extraction; Atomic absorption spectrometry; N,N´-Bis(salicylidene)1,8-diamino-3,6-dioxaoctan

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.8.3.305-309.1587

Article Metrics


This Abstract was viewed 391 times | PDF Article downloaded 111 times

References

[1]. Vallee, B. L.; Falchuk, K. H. Physiol. Rev. 1993, 73, 79-118.

[2]. Mellah, A.; Benachour, D. Chem. Eng. Process. 2006, 45, 684-690.
https://doi.org/10.1016/j.cep.2006.02.004

[3]. Morizono, H.; Oshima T.; Baba, Y. Sep. Purif. Technol. 2011, 80, 390-395.
https://doi.org/10.1016/j.seppur.2011.05.026

[4]. Rodrigues, G. D.; Hespanhol da Silva, M. D. C.; Mendes da Silva, L. H.; Paggioli, F. J.; Minim, L. A.; Reis Coimbra, J. S. D. Sep. Purif. Technol. 2008, 62, 687-693.
https://doi.org/10.1016/j.seppur.2008.03.032

[5]. Mahandra, H.; Singh, R.; Gupta, B. Sep. Purif. Technol. 2017, 177, 281-292.
https://doi.org/10.1016/j.seppur.2016.12.035

[6]. Leinonen, H.; Lehto, J.; Mäkelä, A. React. Polym. 1994, 23, 221-228.
https://doi.org/10.1016/0923-1137(94)90024-8

[7]. Quintanilha, C. L.; Afonso, J. C.; Vianna, C. A.; Gante, V.; Mantovano, J. L. J. Power Sources 2014, 248, 596-603.
https://doi.org/10.1016/j.jpowsour.2013.09.111

[8]. Sayilgan, E.; Kukrer, T.; Yigit, N. O.; Civelekoglu, G.; Kitis, M. J. Hazard. Mater. 2010, 173, 137-143.
https://doi.org/10.1016/j.jhazmat.2009.08.063

[9]. Sajid, M. Anal. Chim. Acta 2017, 965, 36-53.
https://doi.org/10.1016/j.aca.2017.02.023

[10]. Mendil, D.; Karatas, M.; Tuzen, M. Food Chem. 2015, 177, 320-324.
https://doi.org/10.1016/j.foodchem.2015.01.008

[11]. Takano, S.; Tanimizu, M.; Hirata, T.; Shin, K. C.; Fukami, Y.; Suzuki, K.; Sohrin, Y. Anal. Chim. Acta 2017, 967, 1-11.
https://doi.org/10.1016/j.aca.2017.03.010

[12]. Cheng, C. Y.; Barnard, K. R.; Zhang, W.; Zhu, Z.; Pranolo, Y. Chin. J. Chem. Eng. 2016, 24, 237-248.
https://doi.org/10.1016/j.cjche.2015.06.002

[13]. Tuzen, M.; Sahiner, S.; Hazer, B. Food Chem. 2016, 210, 115-120.
https://doi.org/10.1016/j.foodchem.2016.04.079

[14]. Molaei, K.; Bagheri, H.; Asgharinezhad, A. A.; Ebrahimzadeh, H.; Shamsipur, M. Talanta 2017, 167, 607-616.
https://doi.org/10.1016/j.talanta.2017.02.066

[15]. Ribas, T. C. F.; Tóth, I. V.; Rangel, A. O. S. S. Microchem. J. 2017, 130, 366-370.
https://doi.org/10.1016/j.microc.2016.10.016

[16]. Krawczyk, M.; Jeszka-Skowron, M.; Matusiewicz, H. Microchem. J. 2014, 117, 138-143.
https://doi.org/10.1016/j.microc.2014.06.023

[17]. Behbahani, M.; Salarian, M.; Bagheri, A.; Tabani, H.; Omidi, F.; Fakhari, A. J. Food Compos. Anal. 2014, 34, 81-89.
https://doi.org/10.1016/j.jfca.2013.10.003

[18]. Shakerian, F.; Dadfarnia, S.; Haji Shabani, A. A. Food Chem. 2012, 134, 488-493.
https://doi.org/10.1016/j.foodchem.2012.02.105

[19]. Yamini, Y.; Alizadeh, N.; Shamsipur, M. Anal. Chim. Acta 1997, 355, 69-74.
https://doi.org/10.1016/S0003-2670(97)81613-3

[20]. Rofouei, M. K.; Payehghadr, M.; Shamsipur, M.; Ahmadalinezhad, A. J. Hazard. Mater. 2009, 168, 1184-1187.
https://doi.org/10.1016/j.jhazmat.2009.02.165

[21]. Diaz-de Alba, M.; Galindo-Riano, M. D.; Garcia-Vargas, M. Talanta 2012, 100, 432-438.
https://doi.org/10.1016/j.talanta.2012.08.014

[22]. Pohl, P.; Prusisz, B. Talanta 2007, 71, 715-721.
https://doi.org/10.1016/j.talanta.2006.05.030

[23]. Pohl, P. Trends Anal. Chem. 2006, 25, 31-43.
https://doi.org/10.1016/j.trac.2005.04.020

[24]. Pohl, P.; Szymczycha-Madeja, A.; Stelmach, E.; Welna, M. Talanta 2016, 160, 314-324.
https://doi.org/10.1016/j.talanta.2016.07.026

[25]. Pohl, P.; Prusisz, B. Food Chem. 2007, 102, 1415-1424.
https://doi.org/10.1016/j.foodchem.2006.09.007

[26]. Stelmach, E.; Pohl, P.; Szymczycha-Madeja, A. Food Chem. 2013, 141, 1956-1961.
https://doi.org/10.1016/j.foodchem.2013.05.011

[27]. Pohl, P.; Prusisz, B. Talanta 2007, 71, 1616-1623.
https://doi.org/10.1016/j.talanta.2006.07.039

[28]. Pohl, P.; Prusisz, B. J. Food Compos. Anal. 2010, 23, 86-94.
https://doi.org/10.1016/j.jfca.2009.08.002

[29]. Pohl, P.; Prusisz, B. Anal. Chim. Acta 2004, 502, 83-90.
https://doi.org/10.1016/j.aca.2003.09.049

[30]. Pohl, P.; Prusisz, B. Talanta 2006, 69, 1227-1233.
https://doi.org/10.1016/j.talanta.2005.12.053

[31]. Poole, F.; Poole, S. K.; Seibert, D. S.; Champman, C. M. J. Chromatogr. B 1997, 689, 245-259.
https://doi.org/10.1016/S0378-4347(96)00282-4

[32]. Shamsipur, M.; Mashhadizadeh, M. H. Fresenius, J. Anal. Chem. 2000, 367, 246-249.
https://doi.org/10.1007/s002169900303

[33]. Ingle, J. D.; Crouch, S. R.; Spectrochemical Analysis, Prentice Hall, Englewood Cliffs, NJ, 1988.


How to cite


Payehghadr, M. Eur. J. Chem. 2017, 8(3), 305-309. doi:10.5155/eurjchem.8.3.305-309.1587
Payehghadr, M. Flame atomic absorption determination of ultra-trace zinc in environmental samples after pre-concentration by solid phase extraction. Eur. J. Chem. 2017, 8(3), 305-309. doi:10.5155/eurjchem.8.3.305-309.1587
Payehghadr, M. (2017). Flame atomic absorption determination of ultra-trace zinc in environmental samples after pre-concentration by solid phase extraction. European Journal of Chemistry, 8(3), 305-309. doi:10.5155/eurjchem.8.3.305-309.1587
Payehghadr, Mahmood. "Flame atomic absorption determination of ultra-trace zinc in environmental samples after pre-concentration by solid phase extraction." European Journal of Chemistry [Online], 8.3 (2017): 305-309. Web. 21 Oct. 2019
Payehghadr, Mahmood. "Flame atomic absorption determination of ultra-trace zinc in environmental samples after pre-concentration by solid phase extraction" European Journal of Chemistry [Online], Volume 8 Number 3 (30 September 2017)

DOI Link: https://doi.org/10.5155/eurjchem.8.3.305-309.1587

Refbacks

  • There are currently no refbacks.




Copyright (c)




© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.