European Journal of Chemistry 2017, 8(3), 229-239 | doi: https://doi.org/10.5155/eurjchem.8.3.229-239.1589 | Get rights and content

Issue cover





  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Preparation of novel compounds, characterization and studying experimentally and theoretically as inhibitors through thermodynamic and quantum chemistry


Mushtaq Jerri Meften (1,*)

(1) Education Directorate of Basrah, Ministry of Education, Basrah, 61001, Iraq
(*) Corresponding Author

Received: 23 May 2017 | Accepted: 26 Jun 2017 | Published: 30 Sep 2017 | Issue Date: September 2017

Abstract


To inhibit corrosion of the mild steel Q235 type in cooling water systems, two heterocyclic compounds were used, namely (3-(2-hydroxy-3-methoxyphenyl)-5-(4-nitrophenyl)-2-(4-((4-nitrophenyl)diazennyl)phenyl)dihydro-2H-pyrrolo[3,4-d]isoxazole-4,6(5H,6aH)-dione) (A1), and (5-(4-(1,3,5-dithiazinan-5-yl)phenyl)-5-pentyl-1,3,5-dithiazinan-5-ium (A2). They were experimentally evaluated by weight loss method at deference concentrations from 1×10-1 M to 1×10-5 M at 5 hours, and theoretically through thermodynamic functions, such as activation energy, standard free energy of adsorption, enthalpy of adsorption and entropy of adsorption. On the other hand, they were theoretically studied through quantum chemistry, such as quantum parameters including Highest occupied molecular orbital )HOMO( energy, Lowest unoccupied molecular orbital (LUMO) energy, energy gap, dipole moment, chemical potential, ΔEBack-donation, global hardness, global softness, global electrophilicity index, ionization potential, electro negativity and number of transferred electrons. The temperature effect on the corrosion rate has been studied at 25, 35, 45, 55 and 65 °C, and the adsorption for studied inhibitors on mild steel surface obeyed Langmuir adsorption isotherm. The methods of compounds preparation A1 and A2 are different from each other, A1 was prepared through several steps, and A2 through the domino reaction (by two step). The results indicate that the studied inhibitors exhibit good performance as an inhibitors for mild steel corrosion in cooling water systems, and inhibition efficiency increasing with increase inhibitors concentration and decreased with temperature rise.


Announcements


Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.

1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization between November 15, 2022 and December 28, 2022 (Voucher code: SINGLE2022).

2. Young writers will not be charged for the article processing fee between November 15, 2022 and December 28, 2022 (Voucher code: YOUNG2022).

3. The article processing fee will not be charged from the articles containing a part of the PhD thesis between November 15, 2022 and December 28, 2022 (Voucher code: PhD2022).

4. The article processing fee will not be charged from authors who have at least one publication in the European Journal of Chemistry between November 15, 2022 and December 28, 2022 (Voucher code: (Voucher code: AUTHOR2022).

Editor-in-Chief

European Journal of Chemistry

Keywords


Mild steel Q235; Thermodynamic; Quantum chemistry; Corrosion inhibitors; Adsorption isotherm; Heterocyclic compounds

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.8.3.229-239.1589

Links for Article


| | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 1116 times | icon graph PDF Article downloaded 332 times

Funding information


The Research Department and Quality Control, South Oil Company, Basrah, The Polymer Researches Center, Basrah University, Basrah, Iraq.

References


[1]. Loutfy, H. M.; Elroby, S. K. Int. J. Ind. Chem. 2015, 6(3), 165-184.
https://doi.org/10.1007/s40090-015-0039-7

[2]. Hikmat, A. R. A. Engineering 2017, 9, 254-262.
https://doi.org/10.4236/eng.2017.93013

[3]. Al-Sabagh, A. M.; Notaila, M. N.; Ahmed, A. F.; Mohamed, A. M.; Abdelmonem, M. F. E.; Tahany, M. Egypt. J. Petroleum 2013, 22, 101-116.

[4]. Khaled, K. F.; Babic-Samardzija, K.; Hackerman, N. Electrochim. Acta 2005, 50, 2515-2520.
https://doi.org/10.1016/j.electacta.2004.10.079

[5]. Altsybiera, A. I.; Levin, S. Z.; Dorokhov, A. P., Third European Symposium of Corrosion Inhibitors, University of Ferrara, Ferrara, Italy, 1971.

[6]. Al-Sawaad, H. Z. M. J. Mater. Environ. Sci. 2011, 2(2), 128-147.

[7]. Granese, S. L. Corros. Sci. 1988, 44, 322-328.
https://doi.org/10.5006/1.3583944

[8]. Tadros, A. B.; Abdenaby, B. A. J. Electro. Chem. 1988, 246, 433-439.
https://doi.org/10.1016/0022-0728(88)80178-5

[9]. Bincy, J.; Abraham, J. Port. Electrochim. Acta 2011, 29(4), 253-271.
https://doi.org/10.4152/pea.201104253

[10]. Bentiss, F.; Lagrenee, M. J. Mater. Environ. Sci. 2011, 2(1), 13-17.

[11]. Elmsellem, H.; Karrouchi, K.; Aouniti, A.; Hammouti, B.; Radi, S.; Taoufik, J.; Ansar, M.; Dahmani, M.; Steli, H.; El Mahi, B. Der Pharma Chemica 2015, 7(10), 237-245.

[12]. Zarrok, H.; Oudda, H.; Zarrouk, A.; Salghi, R.; Hammouti, B.; Bouachrine, M. Der Pharma Chemica 2011, 3(6), 576-590.

[13]. Ehteram, A. N.; Aisha, H. Mater. Chem. Phys. 2008, 110, 145-154.
https://doi.org/10.1016/j.matchemphys.2008.01.028

[14]. Riggs, O. L. J.; Hurd, R. M. Corrosion 1967, 23, 252-259.
https://doi.org/10.5006/0010-9312-23.8.252

[15]. Durnie, W.; Marco, R. D.; Jefferson, A.; Kinsella, B. J. Electrochem. Soc. 1999, 146, 1751-1757.
https://doi.org/10.1149/1.1391837

[16]. Guo-Hao, C.; Jing-Mao, Z. Chem. Res. Chin. Univ. 2012, 28(4), 691-695.

[17]. Pavia, D. L.; Lampman, G. M.; Kriz, G. S. Introduction to Spectroscopy, 3rd edition, Thomson Learning Inc, USA, 2001.

[18]. Macomber, R. S., A Complete Introduction to Modern NMR Spectroscopy, John Wiley & Sons, Inc., Canada, 1998.

[19]. Pretsch, E.; Buhlmann, P.; Badertscher, M. Structure Determination of Organic Compounds, 4th Edition, Germany, 2009.

[20]. Noor, K. M. K.; Adibatul, H. F.; Karimah, K.; Shadatul, H. R.; Mohd, S. M. Malays. J. Analy. Sci. 2014, 18(1), 21-27.

[21]. Saratha, R.; Vasudha, V. G. J. Chem. 2010, 7(3), 677-684.

[22]. Gupta, N. K.; Quraishi, M. A.; Singh, P.; Srivastava, V.; Srivastava, K.; Verma, C.; Mukherjee, A. K. Anal. Bioanal. Electrochem. 2017, 9(2), 245-265.

[23]. Nwabanne, J. T.; Okafor, V. N. J. Emerging Trends Eng. Appl. Sci. 2011, 2(4), 619-625.

[24]. Ghazoui, A.; Saddik, R.; Benchat, N.; Guenbour, M.; Hammouti, B.; Al-Deyab, S. S.; Zarrouk, A. Int. J. Electrochem. Sci. 2012, 7, 7080-7097.

[25]. Obi-Egbedi, N. O.; Obot, I. B. Arab. J. Chem. 2013, 6, 211-223.
https://doi.org/10.1016/j.arabjc.2010.10.004

[26]. Xiang-Hong, L.; Xiao-Guang, X. Acta Phys. Chim. Sin. 2013, 29(10), 2221-2231.

[27]. Awe, F. E.; Idris, S. O.; Abdulwahab, M.; Oguzie, E. E. Mater. Chem. 2015, 1, 111-118.

[28]. Ayssar, N.; Abu-Abdoun, I.; Abdel-Rahman, I.; Al-Khayat, M. Int. J. Corros. 2010, ID: 460154, 1-9.

[29]. Yadav, M.; Kumar, S.; Purkait, T.; Olasunkanmi, L. O.; Bahadur, I.; Ebenso, E. E. J. Mol. Liq. 2016, 213, 122-138.
https://doi.org/10.1016/j.molliq.2015.11.018

[30]. Amin, M. A.; Abd El-Rehim, S. S.; El-Sherbini, E. E. F.; Bayoumi, R. S. Int. J. Electrochem. Sci. 2008, 3, 199-215.

[31]. Al-Juaid, S. S. J. Port. Electrochim. Acta 2007, 25, 363-373.
https://doi.org/10.4152/pea.200703363

[32]. El-Khattabi, O.; Zerga, B.; Sfaira, M.; Taleb, M.; Ebn Touhami, M.; Hammouti, B.; Herrag, L.; Mcharfi, M. Der Pharma Chemica 2012, 4(4), 1759-1768.

[33]. Sudhish, K. S.; Ashish, K. S.; Quraishi, M. A. Int. J. Electrochem. Sci. 2011, 6, 5779-5791.

[34]. Ashish, K. S.; Quraishi, M. A. Int. J. Electrochem. Sci. 2012, 7, 3222-3241.

[35]. Pournazari, S.; Moayed, M. H.; Rahimizadeh, M. J. Corros. Sci. 2013, 71, 20-31.
https://doi.org/10.1016/j.corsci.2013.01.019

[36]. Eddy, N. O.; Odoemelam, S. A.; Odiongenyi, A. O. Adv. Natural Appl. Sci. 2008, 2(1), 35-42.

[37]. Szyprowski, A. J. J. Corros. 2003, 59(1), 68-81.
https://doi.org/10.5006/1.3277538

[38]. Mobin, M.; Masroor, S. Int. J. Electrochem. Sci. 2012, 7, 6920-6940.

[39]. Dahmani, M.; Et-Touhami, A.; Al-Deyab, S. S.; Hammouti, B.; Bouyanzer, A. Int. J. Electrochem. Sci. 2010, 5, 1060-1069.

[40]. Fouda, A. S.; Al-Sarawy, A. A.; El-Katori, E. E. Desalination 2006, 201, 1-13.
https://doi.org/10.1016/j.desal.2006.03.519

[41]. Boukalah, M.; Hammouti, B.; Lagrenee, M.; Bentiss, F. Corros. Sci. 2006, 48, 2831-2837.
https://doi.org/10.1016/j.corsci.2005.08.019

[42]. Khadom, A. A.; Yaro, A. S.; Aitaie, A. S.; Kadum, A. A. H. Port. Electrochim. Acta 2009, 27(6), 699-712.
https://doi.org/10.4152/pea.200906699

[43]. Ebenso, E. E.; Alemu, H.; Umoren, S. A.; Obot, I. B. Int. J. Electrochem. Sci. 2008, 3, 1325-1339.

[44]. Guan, N.; Xueming, L.; Fei, L. Mater. Chem. Phys. 2004, 86, 59-68.
https://doi.org/10.1016/j.matchemphys.2004.01.041

[45]. Muthukrishnan, P.; Jeyaprabha, B.; Prakash, P. Int. J. Indus. Chem. 2014, 5(4), 1-11.

[46]. Saratha, R.; Priya, S. V.; Thilagavathy, P. Eur. J. Chem. 2009, 6(3), 785-789.

[47]. Fouda, A. S.; Elewady, G. Y.; Shalabi, K.; Habbouba, S. J. Mater. Environ. Sci. 2014, 5(3), 767-778.

[48]. Lahmidi, S.; Elyoussfi, A.; Dafali, A.; Elmsellem, H.; Sebbar, N. K.; El Ouasif, L.; Jilalat, A. E.; El-Mahi, B.; Essassi, E. M.; Abdel-Rahman, I.; Hammouti, B. J. Mater. Environ. Sci. 2017, 8 (1), 225-237.

[49]. Lutendo, C. M.; Mwadham, M. K.; Eno, E. E. J. Mol. Liq. 2016, 215, 763-779.
https://doi.org/10.1016/j.molliq.2015.12.095

[50]. Adardour, L.; Lgaz, H.; Salghi, R.; Larouj, M.; Jodeh, S.; Zougagh, M.; Hamed, O.; Taleb, M. Der Pharm. Lett. 2016, 8 (4), 173-185.

[51]. Adejoro, I. A; Ibeji, C. U; Akintayo, D. C. Chem. Sci. 2017, 8(1), 1-6.
https://doi.org/10.1039/C7SC90001E

[52]. Junaedi, S.; Al-Amiery, A. A.; Kadihum, A.; Kadhum, A. H.; Mohamad, Abu Bakar Int. J. Mol. Sci. 2013, 14, 11915-11928.
https://doi.org/10.3390/ijms140611915

[53]. Elazhary, I.; Ben, H.; Laamari, M. R.; El- Haddad, M.; Rafqah, S.; Anane, H.; Moubtassim, M. L. E.; Stiriba, S. E. J. Mater. Environ. Sci. 2016, 7(4), 1252-1266.

[54]. Udhayakalaa, P.; Rajendiranb, T. V.; Gunasekaranc, S. J. Adv. Sci. Res. 2012, 3(2), 71-77.

[55]. Raja, K.; Senthilkumar, A. N.; Tharini, K. Adv in Appl. Sci. Res. 2016, 7(2), 150-154.

[56]. Nirmala, B.; Manjula, P. Int. J. Inno. Sci. Res. 2016, 5(3), 3977-3985.

[57]. Paulin, M. N.; Drissa, S.; Albert, T.; Assemian, Y.; Henri, K. A.; Donourou, D. J. Soc. Ouest-Afr. Chim. 2010, 30, 49-58.

[58]. John, S.; Joseph, A. Mater. Chem. Phys. 2012, 133, 1083-1089.
https://doi.org/10.1016/j.matchemphys.2012.02.020

[59]. Junaedi, S.; Kadhum, A. H.; Al-Amiery, A. A.; Mohamad, A.; Takriff, M. S. Int. J. Electrochem. Sci. 2012, 7, 3543-3554.

[60]. Nnenna, W. O.; Jonathan, O. B.; Ekemini, B. I.; Abiodun, O. E. American J. Phys. Chem. 2015, 4, 1-9.

[61]. Cherrak, K.; Dafali, A.; Elyoussfi, A.; El Ouadi, Y.; Sebba, N. K; El Azzouzi, M.; Elmsellem, H.; Essassi, E. M.; Zarrouk, A. J. ater. Environ. Sci. 2017, 8(2), 636-647.

[62]. Qian, Z.; Tiantian, T.; Peilin, D.; Zhiyi, Z.; Fang, W. Metals 2017, 7(44), 1-11.

[63]. Nithya, P.; Rameshkumar, S.; Sankar, A. Chem. Sci. Rev. Lett. 2017, 6(21), 20-30.


How to cite


Meften, M. Eur. J. Chem. 2017, 8(3), 229-239. doi:10.5155/eurjchem.8.3.229-239.1589
Meften, M. Preparation of novel compounds, characterization and studying experimentally and theoretically as inhibitors through thermodynamic and quantum chemistry. Eur. J. Chem. 2017, 8(3), 229-239. doi:10.5155/eurjchem.8.3.229-239.1589
Meften, M. (2017). Preparation of novel compounds, characterization and studying experimentally and theoretically as inhibitors through thermodynamic and quantum chemistry. European Journal of Chemistry, 8(3), 229-239. doi:10.5155/eurjchem.8.3.229-239.1589
Meften, Mushtaq. "Preparation of novel compounds, characterization and studying experimentally and theoretically as inhibitors through thermodynamic and quantum chemistry." European Journal of Chemistry [Online], 8.3 (2017): 229-239. Web. 28 Nov. 2022
Meften, Mushtaq. "Preparation of novel compounds, characterization and studying experimentally and theoretically as inhibitors through thermodynamic and quantum chemistry" European Journal of Chemistry [Online], Volume 8 Number 3 (30 September 2017)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.8.3.229-239.1589


CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2017, 8(3), 229-239 | doi: https://doi.org/10.5155/eurjchem.8.3.229-239.1589 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c)





© Copyright 2010 - 2022  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2022 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.