European Journal of Chemistry 2017, 8(3), 310-313. doi:10.5155/eurjchem.8.3.310-313.1610

Removal of metronidazole from aqueous solution using activated carbon


Habibi Belhassen (1,*) , Ibtissem Ghorbel-Abid (2) , Lahsini Rim (3)

(1) Laboratory for Applications of Chemistry to Resources, Natural Substances and Environment, Carthage University, Faculty of Sciences of Bizerte, Zarzouna, Bizerte, 7021, Tunisia
(2) Laboratory of Methods and Techniques of Analysis, National Institute of Physico-chemical Analysis, Technological Pole, Sidi Thabet, Ariana, 2020, Tunisia
(3) Laboratory of Research and Development, Tunisian Company for Pharmaceutical Industry, Siphat, 2034, Tunisia
(*) Corresponding Author

Received: 05 Jul 2017, Accepted: 11 Aug 2017, Published: 30 Sep 2017

Abstract


Metronidazole antibiotic is a medication once discharged into the water after use, can react with living organisms and causing adverse effects to their lives. This kind of contaminant must be removed from wastewater and the technique adopted in this work is the liquid-solid adsorption method. The removal of metronidazole in aqueous solutions is carried out on powdered activated carbon. Different parameters such as solid/liquid ratio, temperature, pH, concentration, and contact time influencing this adsorption are examined. The Langmuir isotherm appears the most satisfactory is best suited for modeling the adsorption of metronidazole. In addition, the pH and the temperature do not seem to have any noticeable effect on the adsorption of metronidazole. The experimental results showed that metronidazole was removed at 64% for concentration of 50 mg/L for contact time of 20 min.


Keywords


Kinetics; Isotherm; Adsorption; Metronidazole; Activated carbon; Thermodynamics

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.8.3.310-313.1610

Article Metrics


This Abstract was viewed 519 times | PDF Article downloaded 161 times

References

[1]. Cohen, S. H.; Gerding, D. N.; Johnson, S.; Kelly, C. P.; Loo, V. G.; McDonald, L. C.; Wilcox, M. H. Infect. Control Hosp. Epidemiol. 2010, 31(5), 431-455.
https://doi.org/10.1086/651706

[2]. Megalai, S. M.; Manjula. P.; Manonmani, K. N.; Kavitha, N.; Baby, N. Port. Electrochim. Acta 2012, 30(6), 395-403.
https://doi.org/10.4152/pea.201206395

[3]. Magalhaes, S. M. S.; Bretas, C. M.; Brêtas, J. M.; Pianetti, G. A.; Franco, M. W.; Barbosa, F. A. R. Braz. J. Biol. 2014, 74(3), 120-124.
https://doi.org/10.1590/1519-6984.03513

[4]. Kolodziejska, M.; Maszkowska, J.; Bialk-Bielinska, A.; Stepnowski, P.; Kumirska, J. 13th International Conference of Environmental Science and Technology Athens, Greece, 5-7 September 2013.

[5]. Johnson, S.; Jadon, N. Antibiotic Residues in Honey Investigators, Centre for Science and Environment, New Delhi, September, 2010.

[6]. Rabolle, M.; Spliid, N. H. Chemosphere 2000, 40(7), 715-722.
https://doi.org/10.1016/S0045-6535(99)00442-7

[7]. Kumar, K.; Gupta, S. C.; Chander, Y.; Singh, A. K. Adv. Agron. 2005, 87, 1-54.
https://doi.org/10.1016/S0065-2113(05)87001-4

[8]. Helali, N.; Monser, L. J. Sep. Sci. 2008, 31(2), 276-282.
https://doi.org/10.1002/jssc.200700347

[9]. Bekkouche, S.; Bouhlassa, M.; Salah, N. H.; Meghlaoui, F. Z. Desalination 2004, 166, 355-336.
https://doi.org/10.1016/j.desal.2004.06.090

[10]. Langmuir, I. J. Am. Chem. Soc. 1918, 40, 1361-1403.
https://doi.org/10.1021/ja02242a004

[11]. Frendlich, H. M. F. Z. Physc. Chem. 1906, 57, 385-470.

[12]. Khazri, H.; Ghorbel-Abid, I.; Kalfat, R.; Trabelsi-Ayadi, M. Int. J. Chem. Phys. Sci. 2014, 2(10), 1191-1202.

[13]. Vijay, K. S.; Perm, N. T. J. Chem. Technol. Biotechnol. 1997, 69, 376-382.
https://doi.org/10.1002/(SICI)1097-4660(199707)69:3<376::AID-JCTB714>3.0.CO;2-F

[14]. Nandi, B. K.; Goswami, A.; Purkait, M. K. Appl. Clay Sci. 2009, 42, 583-590.
https://doi.org/10.1016/j.clay.2008.03.015

[15]. Kandil, E. H. K.; Saad, E. A.; Aziz, A. A. A.; Aboelhasan, A. E. Eur. J. Chem. 2012, 3(1), 99-105.
https://doi.org/10.5155/eurjchem.3.1.99-105.568

[16]. Jodeh, S. Eur. J. Chem. 2012, 3(4), 468‐474.
https://doi.org/10.5155/eurjchem.3.4.468-474.706

[17]. Khazri, H.; Ghorbel-Abid, I.; Kalfat, R. Appl. Water Sci. 2016, 1-10. doi:10.1007/s13201-016-0414-3.
https://doi.org/10.1007/s13201-016-0414-3

[18]. Sandesh, K.; Kumar, R. S.; Babu, P. E. J. Asia-Pacific J. Chem. Eng. 2013, 8(1), 144-153.
https://doi.org/10.1002/apj.1639


How to cite


Belhassen, H.; Ghorbel-Abid, I.; Rim, L. Eur. J. Chem. 2017, 8(3), 310-313. doi:10.5155/eurjchem.8.3.310-313.1610
Belhassen, H.; Ghorbel-Abid, I.; Rim, L. Removal of metronidazole from aqueous solution using activated carbon. Eur. J. Chem. 2017, 8(3), 310-313. doi:10.5155/eurjchem.8.3.310-313.1610
Belhassen, H., Ghorbel-Abid, I., & Rim, L. (2017). Removal of metronidazole from aqueous solution using activated carbon. European Journal of Chemistry, 8(3), 310-313. doi:10.5155/eurjchem.8.3.310-313.1610
Belhassen, Habibi, Ibtissem Ghorbel-Abid, & Lahsini Rim. "Removal of metronidazole from aqueous solution using activated carbon." European Journal of Chemistry [Online], 8.3 (2017): 310-313. Web. 22 Sep. 2019
Belhassen, Habibi, Ghorbel-Abid, Ibtissem, AND Rim, Lahsini. "Removal of metronidazole from aqueous solution using activated carbon" European Journal of Chemistry [Online], Volume 8 Number 3 (30 September 2017)

DOI Link: https://doi.org/10.5155/eurjchem.8.3.310-313.1610

Refbacks

  • There are currently no refbacks.




Copyright (c)




© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.