European Journal of Chemistry 2018, 9(1), 39-43. doi:10.5155/eurjchem.9.1.39-43.1676

Comparison of the observed size-dependent melting point of CdSe nanocrystals to theoretical predictions


Albert Demaine Dukes III (1,*) orcid , Christopher Dylan Pitts (2) orcid , Anyway Brenda Kapingidza (3) orcid , David Eric Gardner (4) orcid , Ralph Charles Layland (5) orcid

(1) Department of Physical Sciences, Lander University, Greenwood, SC 29649, United States of America
(2) Department of Physical Sciences, Lander University, Greenwood, SC 29649, United States of America
(3) Department of Physical Sciences, Lander University, Greenwood, SC 29649, United States of America
(4) Department of Physical Sciences, Lander University, Greenwood, SC 29649, United States of America
(5) Department of Physical Sciences, Lander University, Greenwood, SC 29649, United States of America
(*) Corresponding Author

Received: 28 Nov 2017, Accepted: 07 Jan 2018, Published: 31 Mar 2018

Abstract


Cadmium selenide nanocrystals were observed to have a size-dependent melting point which was depressed relative to the bulk melting temperature. The observed size-dependent melting point ranged from 500-1478 K, while a model based on the surface area to volume ratio predicted that is should range between 774-1250 K. The nanocrystals were heated in situ in the electron microscope, and the melting point was almost immediately followed by the vaporization of the CdSe nanocrystals, allowing for straightforward determination of the melting temperature. The differences between the observed melting point of CdSe nanocrystals and the values predicted by the surface area to volume ratio model indicates that additional factors are involved in the melting point depression of nanocrystals.


Keywords


CdSe; Size effects; Nanocrystals; Phase transitions; Electron microscopy; Melting point depression

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.9.1.39-43.1676

Article Metrics


This Abstract was viewed 435 times | PDF Article downloaded 174 times

References

[1]. Brus, L. E. J. Chem. Phys. 1984, 80, 4403-4408.
https://doi.org/10.1063/1.447218

[2]. Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706-8715.
https://doi.org/10.1021/ja00072a025

[3]. Landes, C.; Burda, C. Braun, M. J. Phys. Chem. B 2001, 105, 2981-2986.
https://doi.org/10.1021/jp0041050

[4]. Swafford, L. A.; Weigand, L. A.; Bowers, M. J.; McBride, J. R.; Rapaport, J. L.; Watt, T. L.; Dixit, S. K.; Feldman, L. C.; Rosenthal, S. J. J. Am. Chem. Soc. 2006, 128, 12299-12306.
https://doi.org/10.1021/ja063939e

[5]. Rosenthal, S. J.; McBride, J.; Pennycook, S.; Feldman, L. C. Surf. Sci. Rep. 2007, 62, 111-157.
https://doi.org/10.1016/j.surfrep.2007.02.001

[6]. Antoniammal, P.; Arivuoli, D. J. J. Nanomater. 2012, 2012, 415797.

[7]. Magomedov, M. N. Tech. Phys. 2016, 61, 730-733.
https://doi.org/10.1134/S1063784216050157

[8]. Pan, L. S.; Lee, H. P.; Lu, C. Eur. Phys. J. D 2008, 50, 27-33.
https://doi.org/10.1140/epjd/e2008-00183-2

[9]. Delogu, F. J. Mater. Sci. 2008, 43, 2611-2617.
https://doi.org/10.1007/s10853-008-2470-z

[10]. Pawlow, P. Zeitschrift für Phys. Chemie 1909, 65, 1-35.
https://doi.org/10.1515/zpch-1909-6502

[11]. Holloman, J. H.; Turnbull, D. Prog. Met. Phys. 1953, 4, 333-388.
https://doi.org/10.1016/0502-8205(53)90020-3

[12]. Qi, W. H. Physica B 2005, 368, 46-50.
https://doi.org/10.1016/j.physb.2005.06.035

[13]. Gupta, S. K.; Talati, M.; Jha, P. K. Mater. Sci. Forum 2008, 570, 132-137.
https://doi.org/10.4028/www.scientific.net/MSF.570.132

[14]. Goldstein, A. N.; Echer, C. M.; Alivisatos, A. P. Science, 1992, 256, 1425-1427.
https://doi.org/10.1126/science.256.5062.1425

[15]. Jiang, H.; Moon, K. S.; Dong, H.; Hua, F.; Wong, C. P. Chem. Phys. Lett. 2006, 429, 492-496.
https://doi.org/10.1016/j.cplett.2006.08.027

[16]. Cameron, M. T.; Rogerson, J. A.; Blom, D. A.; Dukes III, A. D. Front. Mater. Sci. 2016, 10, 8-14.
https://doi.org/10.1007/s11706-016-0319-y

[17]. Yu, W. W.; Peng, X. Angew. Chemie Int. Ed. 2002, 114, 2368-2371.
https://doi.org/10.1002/1521-3773(20020703)41:13<2368::AID-ANIE2368>3.0.CO;2-G

[18]. Harrell, S. M; McBride, J. R.; Rosenthal, S. J. Chem. Mater. 2013, 25, 1199-1210.
https://doi.org/10.1021/cm303318f

[19]. Shen, Y.; Gee, M. Y.; Tan, R.; Pellechia, P. J.; Greytak, A. B. Chem. Mater. 2013, 25, 2838-2848.
https://doi.org/10.1021/cm4012734

[20]. Somorjai, G. A. J. Phys. Chem. 1961, 65, 1059-1061.
https://doi.org/10.1021/j100824a511

[21]. Lide, D. R. CRC Handbook of Chemistry and Physics, 83rd edition, CRC Press, 2002.

[22]. Liu, L.; Zhuang, Z.; Xie, T.; Wang, Y. G.; Li, J.; Peng, Q.; Li, Y. J. Am. Chem. Soc. 2009, 131, 16423-16429.
https://doi.org/10.1021/ja903633d

[23]. Taylor, J.; Kippeny, T.; Rosenthal, S. J. J. Clust. Sci. 2001, 12, 571-582.
https://doi.org/10.1023/A:1014246315331

[24]. Pennycook, T. J.; McBride, J. R.; Rosenthal, S. J.; Pennycook, S. J.; Pantelides, S. T. Nano Lett. 2012, 12, 3038-3042.
https://doi.org/10.1021/nl3008727

[25]. Puzder, A. Williamson, A. J.; Zaitseva, N.; Galli, G.; Manna, L.; Alivisatos, A. P. Nano Lett. 2004, 4, 2361-2365.
https://doi.org/10.1021/nl0485861

[26]. Li. Z.; Peng, X. J. Am. Chem. Soc. 2011, 133, 6578-6586.
https://doi.org/10.1021/ja108145c


How to cite


Dukes III, A.; Pitts, C.; Kapingidza, A.; Gardner, D.; Layland, R. Eur. J. Chem. 2018, 9(1), 39-43. doi:10.5155/eurjchem.9.1.39-43.1676
Dukes III, A.; Pitts, C.; Kapingidza, A.; Gardner, D.; Layland, R. Comparison of the observed size-dependent melting point of CdSe nanocrystals to theoretical predictions. Eur. J. Chem. 2018, 9(1), 39-43. doi:10.5155/eurjchem.9.1.39-43.1676
Dukes III, A., Pitts, C., Kapingidza, A., Gardner, D., & Layland, R. (2018). Comparison of the observed size-dependent melting point of CdSe nanocrystals to theoretical predictions. European Journal of Chemistry, 9(1), 39-43. doi:10.5155/eurjchem.9.1.39-43.1676
Dukes III, Albert, Christopher Dylan Pitts, Anyway Brenda Kapingidza, David Eric Gardner, & Ralph Charles Layland. "Comparison of the observed size-dependent melting point of CdSe nanocrystals to theoretical predictions." European Journal of Chemistry [Online], 9.1 (2018): 39-43. Web. 18 Sep. 2019
Dukes III, Albert, Pitts, Christopher, Kapingidza, Anyway, Gardner, David, AND Layland, Ralph. "Comparison of the observed size-dependent melting point of CdSe nanocrystals to theoretical predictions" European Journal of Chemistry [Online], Volume 9 Number 1 (31 March 2018)

DOI Link: https://doi.org/10.5155/eurjchem.9.1.39-43.1676

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).


© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.