European Journal of Chemistry 2011, 2(2), 136-145 | doi: | Get rights and content

Issue cover


Theoretical and experimental studies on 2-(2-methyl-5-nitro-1-imidazolyl)ethanol

Sirukarumbur Panduranga Vijaya Chamundeeswari (1) , Emmanuel Rajan James Jebaseelan Samuel (2) , Namadevan Sundaraganesan (3,*)

(1) Photonics Division, School of Advanced Sciences, Vellore Institute of Technology University, Vellore, 632014, Tamilnadu, India
(2) Photonics Division, School of Advanced Sciences, Vellore Institute of Technology University, Vellore, 632014, Tamilnadu, India
(3) Department of Engineering Physics, Annamalai University, Annamalai Nagar Chidambaram, 608002, India
(*) Corresponding Author

Received: 16 Jun 2010 | Accepted: 14 Nov 2010 | Published: 30 Jun 2011 | Issue Date: June 2011


In this work, we report a combined experimental and theoretical study on molecular structure, vibrational spectra, natural bond orbital (NBO) and UV spectral analysis of [2-(2-methyl-5-nitro-1-imidazolyl) ethanol] (Metronidazole-MTD). The FT-IR solid phase (4000-400 cm-1) liquid phase, and FT-Raman spectra (3500-50 cm-1) of MTD were recorded. The molecular geometry, harmonic vibrational frequencies and bonding features of MTD in the ground state have been calculated using the density functional method B3LYP with 6-311G(d,p) as basis set. The assignments of the vibrational spectra have been carried out with the help of the Gauss view program package. Stability of the molecule arising from hyperconjugative interactions and charge delocalization have been analyzed using natural bond orbital analysis. The results show that charge in electron density (ED) in the σ* and π* antibonding orbitals and second order stabilization energies E2 confirms the occurrence of Intramolecular Charge Transfer (ICT) within the molecule. The UV spectrum was measured in ethanol solution. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) results complement the experimental findings. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the Gauge Independent Atomic Orbital (GIAO) method and compared with experimental results.  Finally the results of calculations were applied to simulate Infrared and Raman spectra of the title compound which show good agreement with observed spectra.



Vibrational spectra; NBO analysis; TD-DFT; UV spectra; NMR; Metronidazole

Full Text:

PDF    Open Access

DOI: 10.5155/eurjchem.2.2.136-145.169

Links for Article

| | | | | | |

| | | | | | |

| | |

Related Articles

Article Metrics

icon graph This Abstract was viewed 1863 times | icon graph PDF Article downloaded 705 times



[1]. Yahia N. Mabkhot, Salim S. Al-Showiman, A. Barakat, S. M. Soliman, Nabila A. Kheder, Mohammed M. Alharbi, Abdulrahman Asayari, Abdullatif Bin Muhsinah, Asad Ullah, Syed Lal Badshah
Computational studies of 2-(4-oxo-3-phenylthiazolidin-2-ylidene)malononitrile
BMC Chemistry  13(1), , 2019
DOI: 10.1186/s13065-019-0542-6

[2]. Celal Tuğrul Zeyrek, Gökhan Alpaslan, Hamit Alyar, Mustafa Yıldız, Nefise Dilek, Hüseyin Ünver
Synthesis, molecular structure, spectroscopic and theoretical studies on E-2-ethoxy-4-[(4-ethoxyphenylimino)methyl]phenol
Journal of Molecular Structure  1088, 14, 2015
DOI: 10.1016/j.molstruc.2015.02.001

[3]. Assem Barakat, Abdullah Mohammed Al-Majid, Saied M. Soliman, Mohammad Shahidul Islam, Hussain Mansur Ghawas, Sammer Yousuf, M. Iqbal Choudhary, Abdul Wadood
Monoalkylated barbiturate derivatives: X-ray crystal structure, theoretical studies, and biological activities
Journal of Molecular Structure  1141, 624, 2017
DOI: 10.1016/j.molstruc.2017.04.017

[4]. Assem Barakat, Saied M. Soliman, Abdullah Mohammed Al-Majid, Gehad Lotfy, Hazem A. Ghabbour, Hoong-Kun Fun, Sammer Yousuf, M. Iqbal Choudhary, Abdul Wadood
Synthesis and structure investigation of novel pyrimidine-2,4,6-trione derivatives of highly potential biological activity as anti-diabetic agent
Journal of Molecular Structure  1098, 365, 2015
DOI: 10.1016/j.molstruc.2015.06.037

[5]. Emilio Lizarraga, Diego M. Gil, Gustavo A. Echeverría, Oscar E. Piro, César A.N. Catalán, Aída Ben Altabef
Synthesis, crystal structure, conformational and vibrational properties of 6-acetyl-2,2-dimethyl-chromane
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy  127, 74, 2014
DOI: 10.1016/j.saa.2014.02.035

[6]. Steluta Gosav, Nicoleta Paduraru, Dan Maftei, Mihail Lucian Birsa, Mirela Praisler
Quantum chemical study of a derivative of 3-substituted dithiocarbamic flavanone
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy  172, 115, 2017
DOI: 10.1016/j.saa.2016.04.024

[7]. Moamen S. Refat, Hosam A. Saad, Abdel Majid A. Adam
Spectral, thermal and kinetic studies of charge-transfer complexes formed between the highly effective antibiotic drug metronidazole and two types of acceptors: σ- and π-acceptors
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy  141, 202, 2015
DOI: 10.1016/j.saa.2015.01.029

[8]. S.P. Meenakshisundaram, B. Karthikeyan, K. Muthu, S. Sebastian
Molecular structure, spectroscopic (FT-IR, FT-Raman, UV–vis), NBO, thermochemistry analysis of bis(thiourea)zinc(II) chloride crystals
Molecular Simulation  39(7), 584, 2013
DOI: 10.1080/08927022.2012.755527

[9]. Ibrahim Olasegun Abdulsalami, Banjo Semire, Isa Adewale Bello
Theoretical examination of efficiency of anthocyanidins as sensitizers in dye-sensitized solar cells
Physical Sciences Reviews  0(0), , 2020
DOI: 10.1515/psr-2019-0133

[10]. K. Chandrasekaran, R. Thilak Kumar
Structural, spectral, thermodynamical, NLO, HOMO, LUMO and NBO analysis of fluconazole
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy  150, 974, 2015
DOI: 10.1016/j.saa.2015.06.018

[11]. Siphumelele Majodina, Lubabalo Ndima, Olufunso O. Abosede, Eric C. Hosten, Carolline M. A. Lorentino, Heloísa F. Frota, Leandro S. Sangenito, Marta H. Branquinha, André L. S. Santos, Adeniyi S. Ogunlaja
Physical stability enhancement and antimicrobial properties of a sodium ionic cocrystal with theophylline
CrystEngComm  23(2), 335, 2021
DOI: 10.1039/D0CE01387K

[12]. Aslı Esme, Seda Gunesdogdu Sagdinc
The vibrational studies and theoretical investigation of structure, electronic and non-linear optical properties of Sudan III [1-{[4-(phenylazo) phenyl]azo}-2-naphthalenol]
Journal of Molecular Structure  1048, 185, 2013
DOI: 10.1016/j.molstruc.2013.05.022

[13]. Hakki Türker Akçay, Riza Bayrak
Computational studies on the anastrozole and letrozole, effective chemotherapy drugs against breast cancer
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy  122, 142, 2014
DOI: 10.1016/j.saa.2013.11.028

[14]. Hakkı Türker Akçay, Rıza Bayrak, Ertan Şahin, Kaan Karaoğlu, Ümit Demirbaş
Experimental and computational studies on 4-[(3,5-dimethyl-1H-pyrazol-1-yl)methoxy]phthalonitrile and synthesis and spectroscopic characterization of its novel phthalocyanine magnesium(II) and tin(II) metal complexes
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy  114, 531, 2013
DOI: 10.1016/j.saa.2013.05.042

[15]. Špela Zupančič, Liis Preem, Julijana Kristl, Marta Putrinš, Tanel Tenson, Petra Kocbek, Karin Kogermann
Impact of PCL nanofiber mat structural properties on hydrophilic drug release and antibacterial activity on periodontal pathogens
European Journal of Pharmaceutical Sciences  122, 347, 2018
DOI: 10.1016/j.ejps.2018.07.024

[16]. S. Jone Pradeepa, N. Sundaraganesan
Spectral analysis, vibrational assignments, NBO analysis, NMR, UV–Vis, hyperpolarizability analysis of 2-aminofluorene by Density Functional Theory
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy  125, 211, 2014
DOI: 10.1016/j.saa.2014.01.093

[17]. Heath D. Watts, Mohamed Naseer Ali Mohamed, James D. Kubicki
A DFT study of vibrational frequencies and 13C NMR chemical shifts of model cellulosic fragments as a function of size
Cellulose  21(1), 53, 2014
DOI: 10.1007/s10570-013-0128-8

[18]. Mohammad Islam, Abdullah Al-Majid, Assem Barakat, Saied Soliman, Hazem Ghabbour, Ching Quah, Hoong-Kun Fun
Synthesis, Molecular Structure and Spectroscopic Investigations of Novel Fluorinated Spiro Heterocycles
Molecules  20(5), 8223, 2015
DOI: 10.3390/molecules20058223

[19]. Ayman El-Faham, Saied M. Soliman, Sameh M. Osman, Hazem A. Ghabbour, Mohammed R.H. Siddiqui, Hoong-Kun Fun, Fernando Albericio
One pot synthesis, molecular structure and spectroscopic studies (X-ray, IR, NMR, UV–Vis) of novel 2-(4,6-dimethoxy-1,3,5-triazin-2-yl) amino acid ester derivatives
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy  159, 184, 2016
DOI: 10.1016/j.saa.2016.01.051

[20]. Aslı Eşme, Seda Güneşdoğdu Sağdınç
Molecular structures, spectroscopic (FT–IR, NMR, UV) studies, NBO analysis and NLO properties for tautomeric forms of 1,3-dimethyl-5-(phenylazo)-6-aminouracil by density functional method
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy  188, 443, 2018
DOI: 10.1016/j.saa.2017.07.034

[21]. Towseef Ahmad Hajam, H. Saleem, M. Syed Ali Padhusha, K. K. Mohammed Ameen
Synthesis, quantum chemical calculations and molecular docking studies of 2-ethoxy-4[(2-trifluromethyl-phenylimino)methyl]phenol
Molecular Physics  118(24), e1781945, 2020
DOI: 10.1080/00268976.2020.1781945

[22]. Haiyan Yuan, Yiying Zheng, Bo Li, Wenliang Li, Jingping Zhang
The multieffects of DMF and DBU on the [5 + 1] benzannulation of nitroethane and α-alkenoyl ketene-(S,S)-acetals: Hydrogen bonding and electrostatic interactions
Journal of Computational Chemistry  36(10), 731, 2015
DOI: 10.1002/jcc.23846

[23]. A. M. A. Adam
Synthesis, characterization, and cytotoxic in vitro studies of the antibiotic drug metronidazole complexed with Au(III), Fe(III), Pd(III), and Zn(II): Toward potent gold-drug nanoparticles in cancer chemotherapy
Russian Journal of General Chemistry  86(5), 1137, 2016
DOI: 10.1134/S1070363216050261


[1]. Burtin, P. Am. J. Obstet. Gynecol. 1995, 172, 525-529.

[2]. Lam, A.; Rivera, A.; Fuentes, G. R. Microporous & Mesoporous Mater. 2001, 49, 157-162.

[3]. Blaton, N. M.; Peetres, O. M.; Ranter, C. J. D. Acta Cryst. B 1979, 35, 2465-2467.

[4]. Sebastian, S.; Sundaragnesan, N.; Manoharan, S. Spectrochim Acta A 2009, 74, 312-323.

[5]. Abraham, J. P.; Joe, I. H.; George, V.; Nielson, O. F.; Jayakumar, V. S. Spectrochim. Acta A 2003, 59, 193-199.

[6]. Binoy, J.; Abraham, J. P.; Joe, I. H.; Jayakumar, V. S.; Aubard, J.; Nielson, O. F. J. Raman Spectrosc. 2005, 36, 63-72.

[7]. Gaussian 03, Revision A. 1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr. J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Pittsburgh PA, 2003.

[8]. Schlegel, H. B. J. Comput. Chem. 1982, 3, 214-218.

[9]. Frisch, A.; Nielson, A. B.; Holder, A. J. GAUSSVIEW User Manual, Gaussian Inc., Pittsburgh, PA, 2000.

[10]. Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO version 3. 1, TCI, University of Wisconsin, Madison, 1998.

[11]. Ditchfield, R. Mol. Phys. 1974, 27, 789-807.

[12]. Wolinski, K.; Hinton, J. F.; Pulay, P. J. Am. Chem. Soc. 1990, 112(23), 8251-8260.

[13]. Azizi, N.; Rostami, A. A., Godarzian, A. J. Phys. Soc. Jpn. 2005, 74, 1609-1620.

[14]. Rohlfing, M.; Leland, C.; Allen. C.; Ditchfield, R. Chem. Phys. 1984, 87, 9-12.

[15]. Keresztury, G.; Holly, S.; Varga, J.; Besenyei, G.; Wang, A. Y; Durig, J. R. Spectrochim. Acta A 1993, 49, 2007-2026.

[16]. Keresztury, G.; Chalmers, J. M.; Griffith, P. R. (Eds.), Raman Spectroscopy: Theory, in Hand book of Vibrational Spectroscopy, Vol. 1, John Wiley & Sons Ltd., New York, 2002.

[17]. Sundaraganesan, N.; Ilakiamani, S.; Saleem, H.; Wojciechowski, D. M.; Michalska, D. Spectrochim Acta A 2005, 61, 2995-3001.

[18]. Jaffrey, G. A. An Introduction to Hydrogen Bonding, Oxford University Press, 1997.

[19]. Szafran, M.; Komasa, A.; Adamska, E. B. J. Mol. Struct. (THEOCHEM) 2007, 827, 101-107.

[20]. James, C.; Amal Raj, A.; Reghunathan, R.; Joe, I. H.; Jayakumar, V. S. J. Raman Spectrosc. 2006, 37, 1381-1392.

[21]. Na, L. J.; Rang, C. Z.; Fang, Y. Z. J. Zhejiang Univ. Sci. B 2005, 6, 584-589.

[22]. Pulay, P.; Forgarasi, G.; Ponger, G.; Boggs, J. E.; Vargha, A. Am. Chem. Soc. 1983, 105, 7037-7047.

[23]. Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502-16513.

[24]. Michalska, D.; Bienko, D. C.; Bienko, A. J. A.; Latajaka, Z. J. Phys. Chem. 1996, 100, 1186-1193.

[25]. Marshal, J. Ind. J. Phys. B 1998, 72, 661-667.

[26]. Lutz, E. T. G.; Mass, J. H. V. Spectrochim. Acta A 1986, 42, 749-755.

[27]. Sundaraganesan, N.; Saleem, H.; Mohan, S. Spectrochim. Acta A 2003, 59, 2511-2517.

[28]. Varsanyi, G. Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives, Vol. 1 and 2, Academic Kiado: Budapest, 1973.

[29]. Sadekov, I. D. Rus. Chem. Rev. 1970, 30, 179-195.

[30]. Orza, J. M.; Obilia, M. O.; Yanez, M. J.; Elguero, Spectrochim Acta. A 1997, 53, 1383-1398.

[31]. Sajan, D.; Binoy, J.; Pradeep, B.; Krishnan, K. V.; Kartha, V. B.; Joe, I. H.; Jayakumar, V. S. Spectrochim. Acta A 2004, 60, 173-180.

[32]. Furic, K.; Mohack, V.; Bonifacic, M.; Stefanic, I. J. Mol. Struct. 1992, 267, 39-44.

[33]. Wiberg, K. B.; Sharke, A. Spectrochim. Acta A 1973, 29, 583-594.

[34]. Mc, Murry, H. L.; Thornton, V. Anal. Chem. 1952, 24, 318-329.

[35]. Roeges, N. P. G, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, Wiley, New York, 1994.

[36]. Lakshmaiah, B.; Ramana Rao, G. J. Raman Spectrosc. 1989, 20, 439-448.

[37]. Areanas, J. F.; Lopez Tocon, I.; Otero, J. C.; Marcos, J. I. J. Mol. Struct. 1997, 410, 433-446.

[38]. Lopez Tocon, I.; Wooley, M. S.; Otero, J. C.; Marcos, J. I. J. Mol. Struct. 1997, 410, 447-450.

[39]. Areanas, J. F.; Lopez Tocon, I.; Wooley, M. S.; Otero, J. C. Marcos, J. I. J. Chem. Soc. Faraday Trans. II 1988, 84, 53-65.

[40]. Silverstein, M.; Basseler, G. C.; Morill, C. Spectrometric Identification of Organic Compounds, Wiley, New York, 1981.

[41]. Yalcin, I.; Sener, E.; Ozden, O.; Akin, O. Eur. J. Med. Chem. 1990, 25, 705-708.

[42]. Saxena, R.; Kandpaul, L. D.; Mathur, G. N, Polym. Sci. A 2002, 40, 3951-3959.

[43]. Panicker, C. Y.; Varghese, H. T.; Ambujakshan, K. R.; Mathew, S.; Ganguli, S.; Nanda, A. K; Alsenoy, C. V.; Mary. S. Y. J. Mol. Struct. 2010, 963, 137-144.

[44]. Mangalam, N. A.; Kurup, M. R. P. Spectrochim. Acta A 2009, 71, 2040-2044.

[45]. El Asmy, A. A.; Al Hazmi, G. A. A. Spectrochim. Acta A 2009, 71, 1885-1890.

[46]. El Shahawy, Ahmed, S. M.; Sayed, N. K. Spectrochim. Acta A 2007, 66, 143-153.

[47]. Kalinowski, H. O.; Berger, S.; Brawn, S. Carbon 13NMR spectroscopy, John Wiley and Sons, Chichester, 1988.

[48]. Pihlajer, K.; Kleinpeter, E. (EDS), Carbon 13Chemical shifts in Structure and Spectrochemical Analysis, VCH publishers, Deerfield Beach, 1994.

How to cite

Vijaya Chamundeeswari, S.; Jebaseelan Samuel, E.; Sundaraganesan, N. Eur. J. Chem. 2011, 2(2), 136-145. doi:10.5155/eurjchem.2.2.136-145.169
Vijaya Chamundeeswari, S.; Jebaseelan Samuel, E.; Sundaraganesan, N. Theoretical and experimental studies on 2-(2-methyl-5-nitro-1-imidazolyl)ethanol. Eur. J. Chem. 2011, 2(2), 136-145. doi:10.5155/eurjchem.2.2.136-145.169
Vijaya Chamundeeswari, S., Jebaseelan Samuel, E., & Sundaraganesan, N. (2011). Theoretical and experimental studies on 2-(2-methyl-5-nitro-1-imidazolyl)ethanol. European Journal of Chemistry, 2(2), 136-145. doi:10.5155/eurjchem.2.2.136-145.169
Vijaya Chamundeeswari, Sirukarumbur, Emmanuel Rajan James Jebaseelan Samuel, & Namadevan Sundaraganesan. "Theoretical and experimental studies on 2-(2-methyl-5-nitro-1-imidazolyl)ethanol." European Journal of Chemistry [Online], 2.2 (2011): 136-145. Web. 18 May. 2021
Vijaya Chamundeeswari, Sirukarumbur, Jebaseelan Samuel, Emmanuel, AND Sundaraganesan, Namadevan. "Theoretical and experimental studies on 2-(2-methyl-5-nitro-1-imidazolyl)ethanol" European Journal of Chemistry [Online], Volume 2 Number 2 (30 June 2011)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item

DOI Link:

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley

European Journal of Chemistry 2011, 2(2), 136-145 | doi: | Get rights and content


  • There are currently no refbacks.

Copyright (c)

© Copyright 2010 - 2021  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2021 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.