

TD-DFT calculations, electronic structure, natural bond orbital analysis, nonlinear optical properties electronic absorption spectra and antimicrobial activity application of new bis-spiropipridinon/pyrazole derivatives
Shimaa Abdel Halim (1,*)

(1) Department of Chemistry, Faculty of Education, Ain Shams University, Roxy 11711, Cairo, Egypt
(*) Corresponding Author
Received: 06 Apr 2018 | Revised: 09 Jun 2018 | Accepted: 11 Jun 2018 | Published: 31 Dec 2018 | Issue Date: December 2018
Abstract
A new bis-spiropipridinon/pyrazole compound and some of its derivatives are characterized in terms of several theoretical parameters such as density of states (DOS), molecular electrostatic potentials (MEPs), non-linear optical (NLO) properties and electrophilicity. The electronic structure and nonlinear optical properties of the studied compounds 1-5 are investigated theoretically at the DFT-B3LYP/6-311G(d,p) level of theory. The effect of substituents of different strengths on the geometry and energetic are analyzed and discussed. The static dipole moment (µ), polarizability (α), anisotropy polarizability (Δα), and first order hyperpolarizability (βtot), are parameters for NLO of the studied compounds have been calculated at the same level of theory and compared with the prototype para-nitro-aniline (PNA). The electronic absorption spectra of the studied compounds are recorded in the UV-VIS region, in both ethanol and dioxane solvents. The theoretical spectra computed at a new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP) at the 6-311G(d,p) bases set in gas phase and with the polarizable continuum model (PCM) in dioxane and ethanol indicate a good agreement with the observed spectra. The antimicrobial activity for studied compounds was investigated. The antimicrobial activity results revealed that compound 4 has a good potency against Gram positive bacteria (E. coli) and Gram negative bacteria (P. vulgaris) in comparison with doxymycin standard. The structure activity relationship SAR has been studied for the studied compounds by DFT calculations, moreover, confirmed practical antimicrobial activity results.
Announcements
One of our sponsors will cover the article processing fee for all submissions made between May 17, 2023 and June 16, 2023 (Voucher code: SPONSOR2023).
Editor-in-Chief
European Journal of Chemistry
Keywords
Full Text:
PDF

DOI: 10.5155/eurjchem.9.4.287-302.1706
Links for Article
| | | | | | |
| | | | | | |
| | | |
Related Articles
Article Metrics


Citations
[1]. Ibrahim Asiata Omotayo, Semire Banjo, Oladuji Tofunmi Emmanuel, Latona Dayo Felix, Oyebamiji Abel Kolawole, Owonikoko Abayomi Dele, Abdulsalami Ibrahim Olasegun, Adeoye Moriam Dasola, Odunola Olusegun Ayobami
Molecular properties and In silico bioactivity evaluation of (4-fluorophenyl)[5)-3-phen-(4-nitrophenyl yl-4,5-dihydro-1H-pyrazol-1-yl]methanone derivatives: DFT and molecular docking approaches
Journal of Taibah University Medical Sciences , , 2023
DOI: 10.1016/j.jtumed.2023.05.011

References
[1]. Kobayashi, J.; Tsuda, M.; Agemi, K.; Shigemori, H.; Ishibashi, M.; Sasaki, T.; Mikami, Y.; Purealidins, B . Tetrahedron 1991, 47, 6617-6622.
https://doi.org/10.1016/S0040-4020(01)82314-0
[2]. James, D. M.; Kunze, H. B.; Faulkner, D. J. J. Nat. Prod. 1991, 54, 1137-1140.
https://doi.org/10.1021/np50076a040
[3]. Hilton, S. T.; Ho, T. C.; Pljevalijcic, G.; Jones, K. A. Org. Lett. 2000, 17, 2639-2641.
https://doi.org/10.1021/ol0061642
[4]. Pavlovska, T. L.; Redkin, R. G.; Lipson, V. V.; Atamanuk, D. V. Mol. Divers. 2016, 20, 299-344.
https://doi.org/10.1007/s11030-015-9629-8
[5]. Urman, H. K.; Bulay, O.; Clayson, D. B.; Shubik, P. Cancer Lett. 1975, 1, 69-74.
https://doi.org/10.1016/S0304-3835(75)95362-8
[6]. Duksin, D.; Katchalski, E.; Sachs, L. Proc. Natl. Acad. Sci. 1970, 67(1), 185-192.
https://doi.org/10.1073/pnas.67.1.185
[7]. Field, A. K.; Tytell, A. A.; Lampson, G. P.; Hilleman, M. R. Proc. Natl. Acad. Sci. USA 1967, 58(3), 1004-1010.
https://doi.org/10.1073/pnas.58.3.1004
[8]. Reddy, C.; Rao, L.; Nagaraj, A. Acta Chim. Slov. 2010, 57, 798-807.
[9]. Kheder, N. A.; Mabkhot, Y. N. Int. J. Mol. Sci. 2012, 13(3), 3661-3670.
https://doi.org/10.3390/ijms13033661
[10]. Abou-Seri, S. M. Eur. J. Med. Chem. 2010, 45(9), 4113-4121.
https://doi.org/10.1016/j.ejmech.2010.05.072
[11]. Abdelmoniem, A.; Elwahy, A. H. M.; Abdelhamid, I. A. Arkivoc 2016, 3, 304-312.
[12]. Cravotto, G.; Giovenzana, G. B.; Pilati, T.; Siste, M.; Palmisano, G. J. Org. Chem. 2001, 66, 8447-8453.
https://doi.org/10.1021/jo015854w
[13]. Daly, J. W.; Spande, T. W.; Whittaker, N.; Highet, R. J.; Feigl, D.; Noshimori, N.; Tokuyama, T.; Meyers, C. W. J. Nat. Prod. 1986, 49, 265-280.
https://doi.org/10.1021/np50044a012
[14]. Waldmann, H. Syn. Let. 1995, 133-141.
[15]. Weber, L. Drug Discov. Today 2002, 7, 143-147.
https://doi.org/10.1016/S1359-6446(02)00010-7
[16]. Domling, A. Curr. Opin. Chem. Biol. 2002, 6, 306-313.
https://doi.org/10.1016/S1367-5931(02)00328-9
[17]. Hassaneen, H. M. E.; Eid, E. M.; Eid, H. A.; Farghaly, T. A.; Mabkhot, Y. M. Molecules 2017, 22, 357-372.
https://doi.org/10.3390/molecules22030357
[18]. Abunada, N. M.; Hassaneen, H. M.; Kandile, N. G.; Miqdad, O. A. Molecules 2008, 13, 1501-1517.
https://doi.org/10.3390/molecules13071501
[19]. Ezawa, M.; Garvey, D. S.; Janero, D. R.; Khanapure, S. P.; Letts, L. G.; Martino, A.; Ranatunge, R. R.; Schwalb, D. J.; Young, D. V. Lett. Drug Design Discov. 2005, 2, 40-43.
https://doi.org/10.2174/1570180053398451
[20]. Suleyman, H.; Buyukokuroglu, M. E. Biol. Pharm. Bull. 2001, 24(10), 1133-1136.
https://doi.org/10.1248/bpb.24.1133
[21]. Abadi, A. H.; Eissa, A. A. H.; Hassan, G. S. Chem. Pharm. Bull. 2003, 51(7), 838-844.
https://doi.org/10.1248/cpb.51.838
[22]. Mohan, S.; Ananthan, S.; Murugan, K. R. Intern. J. Pharma Sci. Res. 2010, 1(9), 391-398.
[23]. Jamwal, A.; Javed, A.; Bhardwaj, V. J. Pharm. Bio. Sci. 2013, 3, 114-123.
[24]. Kvashnin, Y. A.; Kazin, N. A.; Verbitskiy, E. V.; Svalova, T. S.; Ivanova, A. V.; Kozitsina, A. N.; Slepukhin, P. A.; Rusinov, G. L.; Chupakhin, O. N.; Charushina, V. N. Arkivoc 2016, 5, 279-300.
[25]. Asif M. Chem. Intern. 2015, 1(3), 134-163.
[26]. Samshuddin, S.; Narayana, B.; Sarojini, B. K.; Srinivasan, R.; Chandrashekar, K. R. Der Pharma Chem., 2012, 4(2), 587-592.
[27]. Pinto, D. C. G. A.; Santos, C. M. M.; Silva, A. M. S. Advance NMR techniques for structural characterization of heterocyclic structures, Recent Research Developments in Heterocyclic Chemistry, Capitulo 8, pp. 397-475, Research Signpost, Kerala, India, 2007.
[28]. Dawood, K. M. J. Heterocyclic Chem. 2005, 42, 221-225.
https://doi.org/10.1002/jhet.5570420207
[29]. Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
https://doi.org/10.1063/1.464913
[30]. Lee C.; Yang, W.; Parr, R. G. Phys. Rev. B Condens. Matter. 1988, 37, 785-789.
https://doi.org/10.1103/PhysRevB.37.785
[31]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr. , J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision C. 02, Gaussian, Inc. , Wallingford CT, 2004.
[32]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
[33]. Dennington, R.; Keith, T. A.; Millam, J. M. GaussView, Version 5, Semichem Inc., Shawnee Mission KS, 2009.
[34]. Chemcraft - Graphical software for visualization of quantum chemistry computations. https://www.chemcraftprog.com
[35]. O'Boyle, N. M.; Tenderholt, A. L.; Langner, K. M. J. Comput. Chem. 2008, 29, 839-845.
https://doi.org/10.1002/jcc.20823
[36]. Matecki J. G. Trans. Met. Chem. 2010, 59, 2764-2771.
[37]. Yanai, T.; Tew, D.; Handy, N. Chem. Phys. Lett. 2004, 393, 51-57.
https://doi.org/10.1016/j.cplett.2004.06.011
[38]. Chocholousova, J.; Spirko, V.; Hobza, P. Phys. Chem. 2004, 6, 37-41.
[39]. Szafran, M.; Komasa, A.; Bartoszak-Adamska, E. J. Mol. Struct. 2007, 827, 101-107.
https://doi.org/10.1016/j.molstruc.2006.05.012
[40]. Avci, D. Spectrochim. Acta A 2011, 82, 37-43.
https://doi.org/10.1016/j.saa.2011.06.037
[41]. Avci, D.; Basoglu, A.; Atalay, Y. Struct. Chem. 2010, 21, 213-219.
https://doi.org/10.1007/s11224-009-9566-1
[42]. Avci, D.; Comert, H.; Atalay, Y. J. Mol. Mod. 2008, 14, 161-171.
https://doi.org/10.1007/s00894-007-0258-8
[43]. Pearson, R. G. Proc. Nat. Acad. Sci. 1986, 83, 8440-8441.
https://doi.org/10.1073/pnas.83.22.8440
[44]. Chandra, A. K.; Uchimara, T. J. Phys. Chem. A 2001, 105, 3578 -3582.
https://doi.org/10.1021/jp002733b
[45]. El-Hiti, G. A.; Smith, K.; Hegazy, A. S.; Masmali, A. M.; Kariuki, B. M. Acta. Cryst. E 2014, 70, o932-o932.
https://doi.org/10.1107/S160053681401633X
[46]. El-Hiti, G. A.; Smith, K.; Hegazy, A. S.; Alanazi, S. A.; Kariuki, B. M. Acta. Cryst. E 2015, 71, o562-o563.
https://doi.org/10.1107/S2052520615016297
[47]. El-Hiti, G. A.; Smith, K.; Hegazy, A. S.; Ajarim, M. D.; Kariuki, B. M. Acta. Cryst. E 2015, 71, o877-o877.
[48]. Snehalatha, M.; Ravikumar, C.; Hubert, J. I.; Sekar, N.; Jayakumar, V. S. Spectrochim. Acta A 2009, 72, 654-662.
https://doi.org/10.1016/j.saa.2008.11.017
[49]. Bradshow, D. S.; Andrews, D. L. J. Nonlinear Opt. Phys. Matter. 2009, 18, 285-299.
https://doi.org/10.1142/S0218863509004609
[50]. Cheng, L. T.; Tam, W.; Stevenson, S. H.; Meredith, G. R.; Rikken, G.; Marder, S. R. J. Phys. Chem. 1991, 95, 10631-10643.
https://doi.org/10.1021/j100179a026
[51]. Kaatz, P.; Donley, E. A.; Shelton, D. P. J. Chem. Phys. 1998, 108, 849-856.
https://doi.org/10.1063/1.475448
[52]. Gnanasambandan, T.; Gunasekaran, S.; Seshadri, S. Spectrochim. Acta A 2014, 117, 557-567.
https://doi.org/10.1016/j.saa.2013.08.061
[53]. Scrocco, E.; Tomasi, J. J. Adv. Quant. Chem. 1978, 11, 115-193.
https://doi.org/10.1016/S0065-3276(08)60236-1
[54]. Politzer, P.; Murray, J. S. Theor. Chem. Acc. 2002, 108, 134-142.
https://doi.org/10.1007/s00214-002-0363-9
[55]. Sajan, D.; Josepha, L.; Vijayan, N.; Karabacak, M. Spectrochim. Acta A 2011, 81, 85-98.
https://doi.org/10.1016/j.saa.2011.05.052
Supporting information
The Supplementary Material for this article can be found online at: Supplementary files
How to cite
The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item
DOI Link: https://doi.org/10.5155/eurjchem.9.4.287-302.1706

















European Journal of Chemistry 2018, 9(4), 287-302 | doi: https://doi.org/10.5155/eurjchem.9.4.287-302.1706 | Get rights and content
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Authors

This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).
© Copyright 2010 - 2023 • Atlanta Publishing House LLC • All Right Reserved.
The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.
Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.