European Journal of Chemistry 2018, 9(4), 287-302. doi:10.5155/eurjchem.9.4.287-302.1706

TD-DFT calculations, electronic structure, natural bond orbital analysis, nonlinear optical properties electronic absorption spectra and antimicrobial activity application of new bis-spiropipridinon/pyrazole derivatives


Shimaa Abdel Halim (1,*) orcid

(1) Department of Chemistry, Faculty of Education, Ain Shams University, Roxy 11711, Cairo, Egypt
(*) Corresponding Author

Received: 06 Apr 2018, Accepted: 11 Jun 2018, Published: 31 Dec 2018

Abstract


A new bis-spiropipridinon/pyrazole compound and some of its derivatives are characterized in terms of several theoretical parameters such as density of states (DOS), molecular electrostatic potentials (MEPs), non-linear optical (NLO) properties and electrophilicity. The electronic structure and nonlinear optical properties of the studied compounds 1-5 are investigated theoretically at the DFT-B3LYP/6-311G(d,p) level of theory. The effect of substituents of different strengths on the geometry and energetic are analyzed and discussed. The static dipole moment (µ), polarizability (α), anisotropy polarizability (Δα), and first order hyperpolarizability (βtot), are parameters for NLO of the studied compounds have been calculated at the same level of theory and compared with the prototype para-nitro-aniline (PNA). The electronic absorption spectra of the studied compounds are recorded in the UV-VIS region, in both ethanol and dioxane solvents. The theoretical spectra computed at a new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP) at the 6-311G(d,p) bases set in gas phase and with the polarizable continuum model (PCM) in dioxane and ethanol indicate a good agreement with the observed spectra. The antimicrobial activity for studied compounds was investigated. The antimicrobial activity results revealed that compound 4 has a good potency against Gram positive bacteria (E. coli) and Gram negative bacteria (P. vulgaris) in comparison with doxymycin standard. The structure activity relationship SAR has been studied for the studied compounds by DFT calculations, moreover, confirmed practical antimicrobial  activity results.


Keywords


Pyrazole; Bis-spiropipridino; TD-DFT calculations; Antimicrobial activity; NLO and NBO analysis; Solvent and substituent effect

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.9.4.287-302.1706

Article Metrics


This Abstract was viewed 345 times | PDF Article downloaded 119 times

References

[1]. Kobayashi, J.; Tsuda, M.; Agemi, K.; Shigemori, H.; Ishibashi, M.; Sasaki, T.; Mikami, Y.; Purealidins, B . Tetrahedron 1991, 47, 6617-6622.
https://doi.org/10.1016/S0040-4020(01)82314-0

[2]. James, D. M.; Kunze, H. B.; Faulkner, D. J. J. Nat. Prod. 1991, 54, 1137-1140.
https://doi.org/10.1021/np50076a040

[3]. Hilton, S. T.; Ho, T. C.; Pljevalijcic, G.; Jones, K. A. Org. Lett. 2000, 17, 2639-2641.
https://doi.org/10.1021/ol0061642

[4]. Pavlovska, T. L.; Redkin, R. G.; Lipson, V. V.; Atamanuk, D. V. Mol. Divers. 2016, 20, 299-344.
https://doi.org/10.1007/s11030-015-9629-8

[5]. Urman, H. K.; Bulay, O.; Clayson, D. B.; Shubik, P. Cancer Lett. 1975, 1, 69-74.
https://doi.org/10.1016/S0304-3835(75)95362-8

[6]. Duksin, D.; Katchalski, E.; Sachs, L. Proc. Natl. Acad. Sci. 1970, 67(1), 185-192.
https://doi.org/10.1073/pnas.67.1.185

[7]. Field, A. K.; Tytell, A. A.; Lampson, G. P.; Hilleman, M. R. Proc. Natl. Acad. Sci. USA 1967, 58(3), 1004-1010.
https://doi.org/10.1073/pnas.58.3.1004

[8]. Reddy, C.; Rao, L.; Nagaraj, A. Acta Chim. Slov. 2010, 57, 798-807.

[9]. Kheder, N. A.; Mabkhot, Y. N. Int. J. Mol. Sci. 2012, 13(3), 3661-3670.
https://doi.org/10.3390/ijms13033661

[10]. Abou-Seri, S. M. Eur. J. Med. Chem. 2010, 45(9), 4113-4121.
https://doi.org/10.1016/j.ejmech.2010.05.072

[11]. Abdelmoniem, A.; Elwahy, A. H. M.; Abdelhamid, I. A. Arkivoc 2016, 3, 304-312.

[12]. Cravotto, G.; Giovenzana, G. B.; Pilati, T.; Siste, M.; Palmisano, G. J. Org. Chem. 2001, 66, 8447-8453.
https://doi.org/10.1021/jo015854w

[13]. Daly, J. W.; Spande, T. W.; Whittaker, N.; Highet, R. J.; Feigl, D.; Noshimori, N.; Tokuyama, T.; Meyers, C. W. J. Nat. Prod. 1986, 49, 265-280.
https://doi.org/10.1021/np50044a012

[14]. Waldmann, H. Syn. Let. 1995, 133-141.

[15]. Weber, L. Drug Discov. Today 2002, 7, 143-147.
https://doi.org/10.1016/S1359-6446(02)00010-7

[16]. Domling, A. Curr. Opin. Chem. Biol. 2002, 6, 306-313.
https://doi.org/10.1016/S1367-5931(02)00328-9

[17]. Hassaneen, H. M. E.; Eid, E. M.; Eid, H. A.; Farghaly, T. A.; Mabkhot, Y. M. Molecules 2017, 22, 357-372.
https://doi.org/10.3390/molecules22030357

[18]. Abunada, N. M.; Hassaneen, H. M.; Kandile, N. G.; Miqdad, O. A. Molecules 2008, 13, 1501-1517.
https://doi.org/10.3390/molecules13071501

[19]. Ezawa, M.; Garvey, D. S.; Janero, D. R.; Khanapure, S. P.; Letts, L. G.; Martino, A.; Ranatunge, R. R.; Schwalb, D. J.; Young, D. V. Lett. Drug Design Discov. 2005, 2, 40-43.
https://doi.org/10.2174/1570180053398451

[20]. Suleyman, H.; Buyukokuroglu, M. E. Biol. Pharm. Bull. 2001, 24(10), 1133-1136.
https://doi.org/10.1248/bpb.24.1133

[21]. Abadi, A. H.; Eissa, A. A. H.; Hassan, G. S. Chem. Pharm. Bull. 2003, 51(7), 838-844.
https://doi.org/10.1248/cpb.51.838

[22]. Mohan, S.; Ananthan, S.; Murugan, K. R. Intern. J. Pharma Sci. Res. 2010, 1(9), 391-398.

[23]. Jamwal, A.; Javed, A.; Bhardwaj, V. J. Pharm. Bio. Sci. 2013, 3, 114-123.

[24]. Kvashnin, Y. A.; Kazin, N. A.; Verbitskiy, E. V.; Svalova, T. S.; Ivanova, A. V.; Kozitsina, A. N.; Slepukhin, P. A.; Rusinov, G. L.; Chupakhin, O. N.; Charushina, V. N. Arkivoc 2016, 5, 279-300.

[25]. Asif M. Chem. Intern. 2015, 1(3), 134-163.

[26]. Samshuddin, S.; Narayana, B.; Sarojini, B. K.; Srinivasan, R.; Chandrashekar, K. R. Der Pharma Chem., 2012, 4(2), 587-592.

[27]. Pinto, D. C. G. A.; Santos, C. M. M.; Silva, A. M. S. Advance NMR techniques for structural characterization of heterocyclic structures, Recent Research Developments in Heterocyclic Chemistry, Capitulo 8, pp. 397-475, Research Signpost, Kerala, India, 2007.

[28]. Dawood, K. M. J. Heterocyclic Chem. 2005, 42, 221-225.
https://doi.org/10.1002/jhet.5570420207

[29]. Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
https://doi.org/10.1063/1.464913

[30]. Lee C.; Yang, W.; Parr, R. G. Phys. Rev. B Condens. Matter. 1988, 37, 785-789.
https://doi.org/10.1103/PhysRevB.37.785

[31]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr. , J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision C. 02, Gaussian, Inc. , Wallingford CT, 2004.

[32]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

[33]. Dennington, R.; Keith, T. A.; Millam, J. M. GaussView, Version 5, Semichem Inc., Shawnee Mission KS, 2009.

[34]. Chemcraft - Graphical software for visualization of quantum chemistry computations. https://www.chemcraftprog.com

[35]. O'Boyle, N. M.; Tenderholt, A. L.; Langner, K. M. J. Comput. Chem. 2008, 29, 839-845.
https://doi.org/10.1002/jcc.20823

[36]. Matecki J. G. Trans. Met. Chem. 2010, 59, 2764-2771.

[37]. Yanai, T.; Tew, D.; Handy, N. Chem. Phys. Lett. 2004, 393, 51-57.
https://doi.org/10.1016/j.cplett.2004.06.011

[38]. Chocholousova, J.; Spirko, V.; Hobza, P. Phys. Chem. 2004, 6, 37-41.

[39]. Szafran, M.; Komasa, A.; Bartoszak-Adamska, E. J. Mol. Struct. 2007, 827, 101-107.
https://doi.org/10.1016/j.molstruc.2006.05.012

[40]. Avci, D. Spectrochim. Acta A 2011, 82, 37-43.
https://doi.org/10.1016/j.saa.2011.06.037

[41]. Avci, D.; Basoglu, A.; Atalay, Y. Struct. Chem. 2010, 21, 213-219.
https://doi.org/10.1007/s11224-009-9566-1

[42]. Avci, D.; Comert, H.; Atalay, Y. J. Mol. Mod. 2008, 14, 161-171.
https://doi.org/10.1007/s00894-007-0258-8

[43]. Pearson, R. G. Proc. Nat. Acad. Sci. 1986, 83, 8440-8441.
https://doi.org/10.1073/pnas.83.22.8440

[44]. Chandra, A. K.; Uchimara, T. J. Phys. Chem. A 2001, 105, 3578 -3582.
https://doi.org/10.1021/jp002733b

[45]. El-Hiti, G. A.; Smith, K.; Hegazy, A. S.; Masmali, A. M.; Kariuki, B. M. Acta. Cryst. E 2014, 70, o932-o932.
https://doi.org/10.1107/S160053681401633X

[46]. El-Hiti, G. A.; Smith, K.; Hegazy, A. S.; Alanazi, S. A.; Kariuki, B. M. Acta. Cryst. E 2015, 71, o562-o563.
https://doi.org/10.1107/S2052520615016297

[47]. El-Hiti, G. A.; Smith, K.; Hegazy, A. S.; Ajarim, M. D.; Kariuki, B. M. Acta. Cryst. E 2015, 71, o877-o877.

[48]. Snehalatha, M.; Ravikumar, C.; Hubert, J. I.; Sekar, N.; Jayakumar, V. S. Spectrochim. Acta A 2009, 72, 654-662.
https://doi.org/10.1016/j.saa.2008.11.017

[49]. Bradshow, D. S.; Andrews, D. L. J. Nonlinear Opt. Phys. Matter. 2009, 18, 285-299.
https://doi.org/10.1142/S0218863509004609

[50]. Cheng, L. T.; Tam, W.; Stevenson, S. H.; Meredith, G. R.; Rikken, G.; Marder, S. R. J. Phys. Chem. 1991, 95, 10631-10643.
https://doi.org/10.1021/j100179a026

[51]. Kaatz, P.; Donley, E. A.; Shelton, D. P. J. Chem. Phys. 1998, 108, 849-856.
https://doi.org/10.1063/1.475448

[52]. Gnanasambandan, T.; Gunasekaran, S.; Seshadri, S. Spectrochim. Acta A 2014, 117, 557-567.
https://doi.org/10.1016/j.saa.2013.08.061

[53]. Scrocco, E.; Tomasi, J. J. Adv. Quant. Chem. 1978, 11, 115-193.
https://doi.org/10.1016/S0065-3276(08)60236-1

[54]. Politzer, P.; Murray, J. S. Theor. Chem. Acc. 2002, 108, 134-142.
https://doi.org/10.1007/s00214-002-0363-9

[55]. Sajan, D.; Josepha, L.; Vijayan, N.; Karabacak, M. Spectrochim. Acta A 2011, 81, 85-98.
https://doi.org/10.1016/j.saa.2011.05.052


How to cite


Halim, S. Eur. J. Chem. 2018, 9(4), 287-302. doi:10.5155/eurjchem.9.4.287-302.1706
Halim, S. TD-DFT calculations, electronic structure, natural bond orbital analysis, nonlinear optical properties electronic absorption spectra and antimicrobial activity application of new bis-spiropipridinon/pyrazole derivatives. Eur. J. Chem. 2018, 9(4), 287-302. doi:10.5155/eurjchem.9.4.287-302.1706
Halim, S. (2018). TD-DFT calculations, electronic structure, natural bond orbital analysis, nonlinear optical properties electronic absorption spectra and antimicrobial activity application of new bis-spiropipridinon/pyrazole derivatives. European Journal of Chemistry, 9(4), 287-302. doi:10.5155/eurjchem.9.4.287-302.1706
Halim, Shimaa. "TD-DFT calculations, electronic structure, natural bond orbital analysis, nonlinear optical properties electronic absorption spectra and antimicrobial activity application of new bis-spiropipridinon/pyrazole derivatives." European Journal of Chemistry [Online], 9.4 (2018): 287-302. Web. 23 Oct. 2019
Halim, Shimaa. "TD-DFT calculations, electronic structure, natural bond orbital analysis, nonlinear optical properties electronic absorption spectra and antimicrobial activity application of new bis-spiropipridinon/pyrazole derivatives" European Journal of Chemistry [Online], Volume 9 Number 4 (31 December 2018)

DOI Link: https://doi.org/10.5155/eurjchem.9.4.287-302.1706

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).


© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.