European Journal of Chemistry

Application of Hammett equation to intramolecular hydrogen bond strength in para-substituted phenyl ring of trifluorobenzoylacetone and 1-aryl-1,3-diketone malonates

Crossmark


Main Article Content

Vahidreza Darugar
Mohammad Vakili
Sayyed Faramarz Tayyari
Fadhil Suleiman Kamounah
Raheleh Afzali

Abstract

The stability of two stable cis-enol forms in two categories of β-diketones, including para-substituted of trifluorobenzoylacetone (X-TFBA) and 1-aryl-1,3-diketone malonates (X-ADM, X: H, NO2, OCH3, CH3, OH, CF3, F, Cl, and NH2) has been obtained by different theoretical methods. According to our results, the energy difference between the mentioned stable chelated enol forms for the titled compounds is negligible. The theoretical equilibrium constants between the two stable cis-enol of the mentioned molecules are in excellent agreement with the reported experimental equilibrium constant. In addition, the effect of different substitutions on the intramolecular hydrogen bond strength has been evaluated. The correlation between Hammett para-substituent constants, σp. with the theoretical and experimental parameters related to the strength of hydrogen bond in p-X-TFBA and p-X-ADM molecules also investigated by means of density functional theory calculations. The electronic effects of para-substitutions on the intramolecular hydrogen bond strength were determined by NMR and IR data related to intramolecular hydrogen bond strength, geometry, natural bond orbital results, and topological parameters. These parameters were correlated with the Hammett para-substituent constants, σp. Good linear correlations between σp and the several parameters related to the hydrogen bond strength, in this study were obtained.


icon graph This Abstract was viewed 4074 times | icon graph Article PDF downloaded 722 times icon graph Article SUPPLEMENTARY FILE downloaded 0 times

How to Cite
(1)
Darugar, V.; Vakili, M.; Tayyari, S. F.; Kamounah, F. S.; Afzali, R. Application of Hammett Equation to Intramolecular Hydrogen Bond Strength in Para-Substituted Phenyl Ring of Trifluorobenzoylacetone and 1-Aryl-1,3-Diketone Malonates. Eur. J. Chem. 2018, 9, 213-221.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Huggins M.; Thesis, University of California, 1919.

[2]. Fuster, F.; Grabowski, S. J. J. Phys. Chem. A 2011, 115, 10078-10086.
https://doi.org/10.1021/jp2056859

[3]. Lopes Jesus, A. J.; Redinha, J. S. J. Phys. Chem. A 2011, 115, 14069-14077.
https://doi.org/10.1021/jp206193a

[4]. Zahedi-Tabrizi, M.; Farahati, R. Comp. Theor. Chem. 2011, 977, 195-200.
https://doi.org/10.1016/j.comptc.2011.09.034

[5]. Bende, A. Theor. Chem. Acc. 2010, 125, 253-268.
https://doi.org/10.1007/s00214-009-0645-6

[6]. Vakili, M.; Tayyari, S. F.; Kanaani, A.; Nekoei, A. R.; Salemi, S.; Miremad, H.; Berenji, A. R.; Sammelson, R. E. J. Mol. Struct. 2011, 998, 99-109.
https://doi.org/10.1016/j.molstruc.2011.04.045

[7]. Vakili, M.; Nekoei, A. R.; Tayyari, S. F.; Kanaani, A.; Sanati, N. J. Mol. Struct. 2012, 1021, 102-111.
https://doi.org/10.1016/j.molstruc.2012.04.009

[8]. Berenji, A. R.; Tayyari, S. F.; Rahimizadeh, M.; Eshghi, H.; Vakili, M.; Shiri, A. Spectrochim. Acta A 2013, 102, 350-357.
https://doi.org/10.1016/j.saa.2012.10.042

[9]. Gilli, G.; Gilli, P. The nature of hydrogen bond, Oxford: Oxford University Press, 2009.
https://doi.org/10.1093/acprof:oso/9780199558964.001.0001

[10]. Gilli, G.; Belluci, F.; Ferreti, V.; Bertolasi, V. J. Am. Chem. Soc. 1989, 111, 1023-1028.
https://doi.org/10.1021/ja00185a035

[11]. Bertolasi, V.; Gilli, P.; Ferreti, V.; Gilli, G. J. Am. Chem. Soc. 1991, 113, 4917-4925.
https://doi.org/10.1021/ja00013a030

[12]. Gilli, P.; Bertolasi, V.; Ferreti, V.; Gilli, G. J. Am. Chem. Soc. 1994, 116, 909-915.
https://doi.org/10.1021/ja00082a011

[13]. Tayyari, S. F.; Najafi, A.; Emamian, S.; Afzali, R.; Wang, Y. A. J. Mol. Struct. 2008, 878, 10-21.
https://doi.org/10.1016/j.molstruc.2007.07.040

[14]. Zahedi-Tabrizi, M.; Tayyari, F.; Moosavi-Tekyeh, Z.; Jalali, A.; Tayyari, S. F. Spectrochim. Acta A 2006, 65, 387-396.
https://doi.org/10.1016/j.saa.2005.11.019

[15]. Tayyari, S. F.; Milani-Nejad, F.; Rahemi, H. Spectrochim. Acta A 2002, 58, 1669-1679.
https://doi.org/10.1016/S1386-1425(01)00619-9

[16]. Darugar, V. R.; Vakili, M.; Nekoei, A. R.; Tayyari, S. F.; Afzali. R. J. Mol. Struct. 2017, 1150, 427-437.
https://doi.org/10.1016/j.molstruc.2017.09.004

[17]. Schwarzenbach, R. P.; Gschwend, P. M.; Imboden, D. M. Environmental Organic Chemistry, 2nd Ed.; Wiley-Interscience Publishers, 2003, 8, 253-268.

[18]. Jaffe, H. H. Chem. Rev. 1953, 53(2), 191-261.
https://doi.org/10.1021/cr60165a003

[19]. Yingst, A.; Mcdaniel, D. H. J. Inorg. Nucl. Chem. 1966, 28, 2919-2929.
https://doi.org/10.1016/0022-1902(66)80018-0

[20]. May, W. R.; Jones, M. M. J. Inorg. Nucl. Chem. 1962, 24, 511-517.
https://doi.org/10.1016/0022-1902(62)80237-1

[21]. Jimenez-Cruz, F. J.; Olivares, H. R.; Gutierrez, J. L.; Fragoza, M. L. J. Mol. Struc. 2015, 1101, 162-169.
https://doi.org/10.1016/j.molstruc.2015.08.022

[22]. Jimenez-Cruz, F. J.; Mar, L. F.; Gutierrez, J. L. J. Mol. Struc. 2013, 1034, 43-50.
https://doi.org/10.1016/j.molstruc.2012.09.010

[23]. Darugar, V. R.; Vakili, M.; Tayyari, S. F.; Eshghi, H.; Afzali, R. Orient. J. Chem. 2017, 5, 2579-2590.
https://doi.org/10.13005/ojc/330555

[24]. Bader, R. W. F.; Atoms in Molecules, A Quantum Theory, Oxford University Press, New York, 1990.

[25]. Emamian, S. R.; Tayyari, S. F. J. Chem. Sci. 2013, 125, 939-948.
https://doi.org/10.1007/s12039-013-0466-y

[26]. Frisch, M. J.; Trucks G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; A. J. Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc.; Gaussian 09, Revision A. 02, Wallingford CT, 2009.

[27]. Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
https://doi.org/10.1063/1.464913

[28]. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
https://doi.org/10.1103/PhysRevB.37.785

[29]. Muller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618-622.
https://doi.org/10.1103/PhysRev.46.618

[30]. Frisch, M. J.; Head-Gordon, M.; Pople, J. A. Chem. Phys. Lett. 1990, 166, 275-280.
https://doi.org/10.1016/0009-2614(90)80029-D

[31]. Tao, J. M.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Phys. Rev. Lett. 2003, 91, 146401-146404.
https://doi.org/10.1103/PhysRevLett.91.146401

[32]. Tomasi, J.; Persico, M. Chem. Rev. 1994, 94, 2027-2094.
https://doi.org/10.1021/cr00031a013

[33]. Biegler-König, F.; Schönbohm, J. J. Comput. Chem. 2002, 23, 1489-1494.
https://doi.org/10.1002/jcc.10085

[34]. Bader, R. F. W.; Tang, Y. H.; Tal, Y.; Biegler-König, F. W. J. Am. Chem. Soc. 1982, 104, 946-952.
https://doi.org/10.1021/ja00368a004

[35]. Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Weinhold, F. Theor. Chem. Inst.; University of Wisconsin, Madison, WI, 2001.

[36]. McWeeny, R. Phys. Rev. 1962, 126, 1028-1034.
https://doi.org/10.1103/PhysRev.126.1028

[37]. London, F. J. Phys. Radium 1937, 8, 397-409.
https://doi.org/10.1051/jphysrad:01937008010039700

[38]. Afzali, R.; Vakili, M.; Tayyari, S. F.; Eshghi, H.; Nekoei, A. R. Spectrochim. Acta A 2014, 117, 284-298.
https://doi.org/10.1016/j.saa.2013.08.032

[39]. Tayyari, S. F.; Vakili, M.; Nekoei, A. R.; Rahemi, H.; Wang, Y. A. Spectrochim. Acta A 2007, 66, 626-636.
https://doi.org/10.1016/j.saa.2006.04.002

[40]. Sloop, J. C.; Bumgardner, C. L.; Washington, G.; Loehle, W. D.; Sankar, S. S.; Lewis, A. B. J. Fluorine Chem. 2006, 127, 780-786.
https://doi.org/10.1016/j.jfluchem.2006.02.012

[41]. Lopes, A. J.; Redinha, J. S. J. Phys. Chem. A 2011, 115, 14069-14077.
https://doi.org/10.1021/jp110705c

[42]. Espinosa, E.; Molins, E.; Lecomte, C. Chem. Phys. Lett. 1998, 285, 170-173.
https://doi.org/10.1016/S0009-2614(98)00036-0

[43]. Afzali, R.; Vakili, M.; Nekoei, A. R.; Tayyari, S. F. J. Mol. Struct. 2014, 1076, 262-271.
https://doi.org/10.1016/j.molstruc.2014.07.059

[44]. Vakili, M.; Tayyari, S. F.; Nekoei, A. R.; Miremad, H.; Salemi, S.; Sammelson, R. E. J. Mol. Struct. 2010, 970, 160-170
https://doi.org/10.1016/j.molstruc.2010.02.072

[45]. Tayyari, S. F.; Emampour, J. S.; Vakili, M.; Nekoei, A. R.; Eshghi, H.; Salemi, S.; Hassanpour, M. J. Mol. Struct. 2006, 794, 204-214.
https://doi.org/10.1016/j.molstruc.2006.02.011

[46]. Cotman, A. E.; Cahard, D.; Mohar, B. Angew. Chem. 2016, 55, 5294-5298.
https://doi.org/10.1002/anie.201600812

[47]. Buttner, S.; Riahi, A.; Hussain, I.; Yawer, M. A.; Lubbe, M.; Villinger, A.; Reinke, H.; Fischer, C.; Langer, P. Tetrahedron 2009, 65, 2124-2135.
https://doi.org/10.1016/j.tet.2008.12.076

[48]. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899-926.
https://doi.org/10.1021/cr00088a005

[49]. Wiberg, K. W. Tetrahedron 1968, 24, 1083-1096.
https://doi.org/10.1016/0040-4020(68)88057-3

[50]. Raj, R. K.; Gunasekaran, S.; Gnanasambandan, T.; Seshadri, S. Spectrochim. Acta A 2015, 139, 505-514.
https://doi.org/10.1016/j.saa.2014.12.024

[51]. Kosar, B.; Albayrak, C. Spectrochim. Acta A 2011, 87, 160-167.
https://doi.org/10.1016/j.saa.2010.09.016

[52]. Kanaani, A.; Ajloo, D.; Kiyani, H.; Ghasemian, H.; Vakili, M.; Feizabadi, M. Mol. Phys. 2016, 114, 2081-2097.
https://doi.org/10.1080/00268976.2016.1178822

[53]. Kanaani, A.; Ajloo, D.; Kiyani, H.; Ghasemian, H.; Vakili, M.; Mosallanezhad, A. Struct. Chem. 2015, 26, 1095-1113.
https://doi.org/10.1007/s11224-015-0571-2

[54]. Akman, F. Can. J. Phys. 2016, 94, 583-593.
https://doi.org/10.1139/cjp-2016-0041

[55]. Esmaeili, B.; Beyramabadi, S. A.; Sanavi-khoshnood, R.; Morsali, A. Orient. J. Chem. 2015, 31(4), 2129-2135.
https://doi.org/10.13005/ojc/310434

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).