European Journal of Chemistry 2010, 1(3), 228-231 | doi: https://doi.org/10.5155/eurjchem.1.3.228-231.172 | Get rights and content

Issue cover





  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | SHORT COMMUNICATION | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Polyethylene glycol (PEG-400) mediated synthesis of quinoxalines


Lingaiah Nagarapu (1,*) , Raghu Mallepalli (2) , Glory Arava (3) , Lingappa Yeramanchi (4)

(1) Organic Chemistry Division-II, Indian Institute of Chemical Technology, Uppal Road, Hyderabad-500007, India
(2) Department of Chemistry, Sri Venkateswara University, Tirupati-517502, India
(3) Department of Chemistry, Sri Venkateswara University, Tirupati-517502, India
(4) Department of Chemistry, Sri Venkateswara University, Tirupati-517502, India
(*) Corresponding Author

Received: 17 Jun 2010 | Revised: 02 Aug 2010 | Accepted: 10 Aug 2010 | Published: 29 Sep 2010 | Issue Date: September 2010

Abstract


A simple and highly efficient protocol for the synthesis of quinoxaline derivatives from various ortho-phenylenediamines with α-halo ketones under catalyst free conditions is reported by using polyethylene glycol (PEG-400) as an efficient recyclable medium without using any organic co-solvent or additive. This protocol gives wide range of quinoxaline derivatives with high yields.

1_3_228_231_800


Announcements


One of our sponsors will cover the article processing fee for all submissions made between May 17, 2023 and May 31, 2023 (Voucher code: SPONSOR2023).

Editor-in-Chief
European Journal of Chemistry

Keywords


α-Halo ketones; o-Phenylenediamines; Quinoxalines; Catalyst-free; Polyethylene glycol; PEG-400

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.1.3.228-231.172

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 6924 times | icon graph PDF Article downloaded 910 times


Citations

/


[1]. Raghu Mallepalli, Dinesh Kumar Reddy Vennam, Ramu Sridhar Perali
PEG-400 mediated sp 3 C H functionalization of aza-arenes: an enroute to the synthesis of 2-(2-(6-methylpyridin/quinolin-2-yl)-1-phenylethyl)malononitriles
Tetrahedron Letters  57(41), 4541, 2016
DOI: 10.1016/j.tetlet.2016.08.083
/


[2]. Dineshwori Chanu Loukrakpam, Prodeep Phukan
TsNBr2Mediated Synthesis of 2‐Acylbenzothiazoles and Quinoxalines from Aryl Methyl Ketones under Metal Free Condition
ChemistrySelect  4(11), 3180, 2019
DOI: 10.1002/slct.201900713
/


[3]. Gangadhar B. Gundlewad, Bhagwan. R. Patil
Synthesis and bio‐evaluation of novel 2‐arylquinoxaline
Journal of Heterocyclic Chemistry  57(3), 1442, 2020
DOI: 10.1002/jhet.3838
/


[4]. F. Hafeez, A. F. Zahoor, M. Irfan, S. Kamal, S. Ahmad
Facile One-Pot Approach to the Synthesis of Alkyl Piperazine-1-carbodithioates as Hemolytic and Thrombolytic Agents
Russian Journal of Organic Chemistry  58(6), 884, 2022
DOI: 10.1134/S1070428022060197
/


[5]. Joana F. Campos, Sabine Berteina-Raboin
Greener Synthesis of Nitrogen-Containing Heterocycles in Water, PEG, and Bio-Based Solvents
Catalysts  10(4), 429, 2020
DOI: 10.3390/catal10040429
/


[6]. M. REKHA, A. HAMZA, B.R. VENUGOPAL, N. NAGARAJU
Synthesis of 2-Substituted Benzimidazoles and 1,5-Disubstituted Benzodiazepines on Alumina and Zirconia Catalysts
Chinese Journal of Catalysis  33(2-3), 439, 2012
DOI: 10.1016/S1872-2067(11)60338-0
/


[7]. Kamlesh S. Vadagaonkar, Hanuman P. Kalmode, Kaliyappan Murugan, Atul C. Chaskar
I2 catalyzed tandem protocol for synthesis of quinoxalines via sp3, sp2 and sp C–H functionalization
RSC Advances  5(8), 5580, 2015
DOI: 10.1039/C4RA08589B
/


[8]. Susmita Paul, Basudeb Basu
Synthesis of libraries of quinoxalines through eco-friendly tandem oxidation–condensation or condensation reactions
Tetrahedron Letters  52(49), 6597, 2011
DOI: 10.1016/j.tetlet.2011.09.141
/


[9]. Debasish Bandyopadhyay, Jessica Cruz, Liza D Morales, Hadi D Arman, Erica Cuate, Young S Lee, Bimal K Banik, Dae J Kim
A green approach toward quinoxalines and bis-quinoxalines and their biological evaluation against A431, human skin cancer cell lines
Future Medicinal Chemistry  5(12), 1377, 2013
DOI: 10.4155/fmc.13.101
/


[10]. Debojit Hazarika, Prodeep Phukan
Metal free synthesis of quinoxalines from alkynes via a cascade process using TsNBr2
Tetrahedron  73(10), 1374, 2017
DOI: 10.1016/j.tet.2017.01.056
/


[11]. Praveen V. Shitre, Rajkumar R. Harale, Bhaskar R. Sathe, Murlidhar S. Shingare
Silica nanosphere–graphene oxide (SiO2–GO) hybrid catalyzed facile synthesis of functionalized quinoxaline derivatives
Research on Chemical Intermediates  43(2), 829, 2017
DOI: 10.1007/s11164-016-2667-8
/


[12]. Bittu Saha, Bijeta Mitra, Dhiraj Brahmin, Biswajit Sinha, Pranab Ghosh
2-Iodo benzoic acid: An unconventional precursor for the one pot multi-component synthesis of quinoxaline using organo Cu (II) catalyst
Tetrahedron Letters  59(41), 3657, 2018
DOI: 10.1016/j.tetlet.2018.08.051
/


[13]. Raja Sekhar Mekala, Satheesh Krishna Balam, Jaya Prakash Soora Harinath, Raghavendra Reddy Gajjal, Suresh Reddy Cirandur, George Weaver
Polyethylene glycol (PEG-400): An efficient medium for the synthesis of 1,2-disubstituted benzimidazoles
Cogent Chemistry  1(1), 1049932, 2015
DOI: 10.1080/23312009.2015.1049932
/


[14]. Farid Fouad
Multistep soluble polymer-supported, microwave-assisted synthesis of quinoxalines
Green Chemistry Letters and Reviews  6(3), 249, 2013
DOI: 10.1080/17518253.2013.772245
/


[15]. Anne-Catherine Bédard, Shawn K. Collins
Phase Separation As a Strategy Toward Controlling Dilution Effects in Macrocyclic Glaser-Hay Couplings
Journal of the American Chemical Society  133(49), 19976, 2011
DOI: 10.1021/ja208902t
/


[16]. M. Raghu, M. Rajasekhar, B. Chandra Obula Reddy, C. Suresh Reddy, B.V. Subba Reddy
Polyethylene glycol (PEG-400): a mild and efficient reaction medium for one-pot synthesis of 3-hydroxy-3-(pyridin-2-ylmethyl)indolin-2-ones
Tetrahedron Letters  54(27), 3503, 2013
DOI: 10.1016/j.tetlet.2013.04.089
/


[17]. Pranab Ghosh, Amitava Mandal, Raju Subba
γ-Maghemite-silica nanocomposite: A green catalyst for diverse aromatic N-heterocycles
Catalysis Communications  41, 146, 2013
DOI: 10.1016/j.catcom.2013.06.026
/


[18]. Tirumaleswararao Guntreddi, Rajeshwer Vanjari, Saurabh Kumar, Rahul Singh, Neetu Singh, Promod Kumar, Krishna Nand Singh
Elemental sulfur mediated synthesis of benzoxazoles, benzothiazoles and quinoxalines via decarboxylative coupling of 2-hydroxy/mercapto/amino-anilines with cinnamic acids
RSC Advances  6(84), 81013, 2016
DOI: 10.1039/C6RA17491D
/


[19]. Mohsen Abbasi
β-Cyclodextrin as an Efficient and Recyclable Supramolecular Catalyst for the Synthesis of Heterocyclic Compounds
Journal of the Chinese Chemical Society  64(8), 896, 2017
DOI: 10.1002/jccs.201600887
/


[20]. Babita Tanwar, Priyank Purohit, Banothu Naga Raju, Dinesh Kumar, Damodara N. Kommi, Asit K. Chakraborti
An “all-water” strategy for regiocontrolled synthesis of 2-aryl quinoxalines
RSC Advances  5(16), 11873, 2015
DOI: 10.1039/C4RA16568C
/


[21]. K. Padmavathy, Gopalpur Nagendrappa, K.V. Geetha
A rapid synthesis of quinoxalines starting from ketones
Tetrahedron Letters  52(4), 544, 2011
DOI: 10.1016/j.tetlet.2010.11.116
/


[22]. Santosh A. Jadhav, Aniket P. Sarkate, Mahesh G. Shioorkar, Devanand B. Shinde
Expeditious one-pot multicomponent microwave-assisted green synthesis of substituted 2-phenyl Quinoxaline and 7-bromo-3-(4-ethylphenyl) pyrido[2,3-b]pyrazine in water–PEG and water–ethanol
Synthetic Communications  47(18), 1661, 2017
DOI: 10.1080/00397911.2017.1337153
/


[23]. Rezvan Kardooni, Ali Reza Kiasat
Polyethylene Glycol as a Green and Biocompatible Reaction Media for the Catalyst Free Synthesis of Organic Compounds
Current Organic Chemistry  24(12), 1275, 2020
DOI: 10.2174/1385272824999200605161840
/


[24]. Lingaiah Nagarapu, Raghu Mallepalli, U. Nikhil Kumar, P. Venkateswarlu, Rajashaker Bantu, Lingappa Yeramanchi
Synthesis of α1-oxindole-α-hydroxyphosphonates under catalyst-free conditions using polyethylene glycol (PEG-400) as an efficient and recyclable reaction medium
Tetrahedron Letters  53(14), 1699, 2012
DOI: 10.1016/j.tetlet.2012.01.045
/


[25]. Olayinka Oyewale Ajani
Present status of quinoxaline motifs: Excellent pathfinders in therapeutic medicine
European Journal of Medicinal Chemistry  85, 688, 2014
DOI: 10.1016/j.ejmech.2014.08.034
/


[26]. Yumiko Suzuki, Ren Takehara, Kasumi Miura, Ryota Ito, Noriyuki Suzuki
Regioselective Synthesis of Trisubstituted Quinoxalines Mediated by Hypervalent Iodine Reagents
The Journal of Organic Chemistry  86(23), 16892, 2021
DOI: 10.1021/acs.joc.1c02087
/


[27]. Anne-Catherine Bédard, Shawn K. Collins
Influence of Poly(ethylene glycol) Structure in Catalytic Macrocyclization Reactions
ACS Catalysis  3(4), 773, 2013
DOI: 10.1021/cs400050g
/


References


[1]. Seitz, L. E.; Suling, W. J.; Reynolds, R. C. J. Med. Chem. 2002, 45, 5604-5606.
doi:10.1021/jm020310n
PMid:12459027

[2]. Hazeldine, S. T.; Polin, L.; Kushner, J.; Paluch, J.; White, K.; Edelstein, M.; Palomino, E.; Corbett, T. H.; Horwitz, J. P. J. Med. Chem. 2001, 44, 1758-1776.
doi:10.1021/jm0005149
PMid:11356111

[3]. Badran, M. M.; Botros, S.; El-Gendy, A. A.; Abdou, N. A.; El-Assi, H.; Salem, A. Bull. Pharm. Sci. 2001, 24, 135-144.
doi:10.1248/bpb.24.135

[4]. Dell, A.; Williams, D. H.; Morris, H. R.; Smith, G. A.; Feeney, J.; Roberts, G. C. K. J. Am. Chem. Soc. 1975, 97, 2497-2502.
doi:10.1021/ja00842a029
PMid:1133418

[5]. Bailly, C.; Echepare, S.; Gago, F.; Waring, M. J. Anti-Cancer Drug Des. 1999, 14, 291-303.
PMid:10500504

[6]. Sato, S.; Shiratori, O.; Katagiri, K. J. Antibiot. 1967, 20, 270-276.

[7]. Dailey, S.; Feast, J. W.; Peace, R. J.; Sage, I. C.; Till, S.; Wood, E. L. J. Mater. Chem. 2001, 11, 2238-2243.
doi:10.1039/b104674h

[8]. O’Brien, D.; Weaver, M. S.; Lidzey, D. G.; Bradley, D. D. C. Appl. Phys. Lett. 1996, 69, 881-883.
doi:10.1063/1.117975

[9]. Bouabdallah, I.; Zidane, I.; Touzani, R.; Hacht, B.; Ramdani, A. Arkivoc 2006, 10, 77-81.

[10]. VOGEL’s Textbook of Practical Organic Chemistry 5th ed., 1989, p1190.

[11]. Brown, D. J. In Chemistry of Heterocyclic Compounds, Quinoxalines Supplements II; Taylor, E. C., Wipf, P., Eds.; John Wiley and Sons: New Jersey, 2004.

[12]. Bhosale, R. S.; Sarda, S. R.; Andhapure, S. S.; Jadhav, W. N.; Bhusare, S. R.; Pawar, R. P. Tetrahedron Lett. 2005, 46, 7183-7186.
doi:10.1016/j.tetlet.2005.08.080

[13]. More, S. V.; Sastry, M. N. V.; Wang, C.; Yao, C. F. Tetrahedron Lett. 2005, 46, 6345-6348.
doi:10.1016/j.tetlet.2005.07.026

[14]. Aparicio, D.; Attanasi, O. A.; Filippone, P.; Ignacio, R.; Lillini, S.; Mantellini, F.; Palacios, F.; Delos Santos, J. M. J. Org. Chem. 2006, 71, 5897-5905.
doi:10.1021/jo060450v
PMid:16872170

[15]. Wu, Z.; Ede, N. J. Tetrahedron Lett. 2001, 42, 8115-8118.
doi:10.1016/S0040-4039(01)01733-6

[16]. Singh, S. K.; Gupta, P.; Duggineni, S.; Kundu, B. Synlett 2003, 14, 2147-2150.

[17]. Antoniotti, S.; Duńach, E. Tetrahedron Lett. 2002, 43, 3971-3973.
doi:10.1016/S0040-4039(02)00715-3

[18]. Xekoukoulotakis, N. P.; Hadjiantoniu-Maroulis, C. P.; Maroulis, A. J. Tetrahedron Lett. 2000, 41, 10299-10302.
doi:10.1016/S0040-4039(00)01847-5

[19]. Robinson, R. S.; Taylor, R. J. K. Synlett 2005, 6, 1003-1005.

[20]. Raw, S. A.; Wilfred, C. D.; Taylor, R. J. K. Org. Biomol. Chem. 2004, 2, 788-796.
doi:10.1039/b315689c

[21]. Raw, S. A.; Wilfred, C. D.; Taylor, R. J. K. Chem. Commun. 2003, 18, 2286-2287.
doi:10.1039/b307177b
PMid:14518877

[22]. Sithambaram, S.; Ding, Y.; Li, W.; Shen, X.; Gaenzler, F.; Suib, S. L. Green Chem. 2008, 10, 1029-1032.
doi:10.1039/b805155k

[23]. Cai, J-J.; Zou, J-P.; Pan,X-Q.; Zhang, W. Tetrahedron Lett. 2008, 49, 7386-7390.
doi:10.1016/j.tetlet.2008.10.058

[24]. Das, B.; Venkateswarlu, K.; Suneel, K.; Majhi, A. Tetrahedron Lett. 2007, 48, 5371-5374.
doi:10.1016/j.tetlet.2007.06.036

[25]. Chan, S. C.; Sung, G. O. Tetrahedron Lett. 2006, 47, 5633-5636.
doi:10.1016/j.tetlet.2006.06.038

[26]. Chan, S. C.; Wen, X. R.; Sang, C. S. Tetrahedron Lett. 2007, 48, 4665-4667.
doi:10.1016/j.tetlet.2006.11.023

[27]. Chan, S. C.; Wen, X. R. J. Organometallic Chem. 2009, 694, 3215-3217.
doi:10.1016/j.jorganchem.2009.06.002

[28]. Madhav, A.; Murthy, S.N.; Reddy, V.P.; Rama Rao. K, Nageswar, Y. V. D. Tetrahedron Lett. 2009, 50, 6025-6028.
doi:10.1016/j.tetlet.2009.08.033

[29]. Kamal. A.; Reddy, D. R.; Rajendar, Tetrahedron Lett. 2006, 47, 2261-2264.
doi:10.1016/j.tetlet.2006.01.086

[30]. Mukhopadhyay, C.; Tapaswi, P. K. Tetrahedron Lett. 2008, 49, 6237-6240.
doi:10.1016/j.tetlet.2008.08.041

[31]. Jain, S. L.; Singhal, S.; Sain, B. Green Chem. 2007, 9, 740-741.
doi:10.1039/b702311a

[32]. Suryakiran, N.; Srikanth Reddy, T.; Ashalatha, K.; Lakshman, M.; Venkateswarlu, Y. Tetrahedron Lett. 2006, 47, 3853-3856.

[33]. Yogesh, R. J.; Rajagopal, G.; Prakash, J. S.; Ravindra, R. P. Tetrahedron Lett. 2008, 49, 1495-1497.
doi:10.1016/j.tetlet.2007.12.115

[34]. Nagarapu, L.; Chary, M. V.; Supriya, B.; Satyender, A.; Rajashaker, B. Synthesis 2009, 13, 2278-2282.
doi:10.1016/S1090-5138(02)00107-1

[35]. Nagarapu, L.; Gopal, P.; Satyender, A, Synth. Commun. 2009, 39(2), 355-365.
doi:10.1111/j.1467-9280.1992.tb00028.x

[36]. Nagarapu, L.; Rajashaker, B.; Hari Babu, M. J. Heterocyclic Chem. 2009, 48(4), 728-731.

[37]. Nagarapu, L.; Venkata Narsimhaji, CH.; Shukla Chary, K.; Rajashaker, B. Synthesis, 2010, In press, DOI: 10.1055/s-0030-1257973.


How to cite


Nagarapu, L.; Mallepalli, R.; Arava, G.; Yeramanchi, L. Eur. J. Chem. 2010, 1(3), 228-231. doi:10.5155/eurjchem.1.3.228-231.172
Nagarapu, L.; Mallepalli, R.; Arava, G.; Yeramanchi, L. Polyethylene glycol (PEG-400) mediated synthesis of quinoxalines. Eur. J. Chem. 2010, 1(3), 228-231. doi:10.5155/eurjchem.1.3.228-231.172
Nagarapu, L., Mallepalli, R., Arava, G., & Yeramanchi, L. (2010). Polyethylene glycol (PEG-400) mediated synthesis of quinoxalines. European Journal of Chemistry, 1(3), 228-231. doi:10.5155/eurjchem.1.3.228-231.172
Nagarapu, Lingaiah, Raghu Mallepalli, Glory Arava, & Lingappa Yeramanchi. "Polyethylene glycol (PEG-400) mediated synthesis of quinoxalines." European Journal of Chemistry [Online], 1.3 (2010): 228-231. Web. 29 May. 2023
Nagarapu, Lingaiah, Mallepalli, Raghu, Arava, Glory, AND Yeramanchi, Lingappa. "Polyethylene glycol (PEG-400) mediated synthesis of quinoxalines" European Journal of Chemistry [Online], Volume 1 Number 3 (29 September 2010)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.1.3.228-231.172


CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2010, 1(3), 228-231 | doi: https://doi.org/10.5155/eurjchem.1.3.228-231.172 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c)





© Copyright 2010 - 2023  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.