European Journal of Chemistry

Removal of Methylene Blue in aqueous solutions by Electrocoagulation process: Adsorption, Kinetics, studies


Main Article Content

Alain Stéphane Assémian
Konan Edmond Kouassi
Kopoin Adouby
Patrick Drogui
David Boa


The purpose of this study is to understand the mechanism driving the removal of methylene blue through electrocoagulation process. Experiments were carried out using iron as anode and cathode in a batch electrochemical cell operated in a monopolar configuration. The effects of operating parameters (initial pH, current density, initial dye concentration and energy consumption) on the removal of methylene blue from solution were investigated. The results showed that the optimum removal efficiency of 93.2% was achieved for a current density of 9.66 mA/cm2, optimal pH of 8±0.01 with a specific energy consumption of 7.451 kWh/m3. Afterwards, first and second-order rate equations were successively applied to study adsorption kinetics models. On top of usual correlation coefficients (r2), statistical test Chi-square (χ2) were applied to evaluate goodness of fit and consequently find out the best kinetic model. Results showed that MB adsorption process onto iron hydroxides formed in aqueous solution during electrocoagulation treatment followed a second-order kinetic.

icon graph This Abstract was viewed 1828 times | icon graph Article PDF downloaded 800 times

How to Cite
Assémian, A. S.; Kouassi, K. E.; Adouby, K.; Drogui, P.; Boa, D. Removal of Methylene Blue in Aqueous Solutions by Electrocoagulation Process: Adsorption, Kinetics, Studies. Eur. J. Chem. 2018, 9, 311-316.

Article Details

Crossref - Scopus - Google - European PMC

[1]. Kabdaslı, I.; Arslan-Alaton, I.; Olmez-Hancı, T.; Tunay, O. Environ. Technol. Rev. 2012, 1, 2-45.

[2]. Korbahti, B. K.; Tanyolac, A. J. Hazard. Mater. 2008, 151, 422-431.

[3]. Brillas, E.; Martínez-Huitle, C. A. Appl. Catal. B Environ. 2015, 166, 603-643.

[4]. Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P. Bioresour. Technol. 2001, 77, 247-255.

[5]. Khandegar, V.; Saroha, A. K. J. Environ. Manage. 2013, 128, 949-963.

[6]. Zidane, F.; Drogui, P.; Lekhlif, B.; Bensaid, J.; Blais, J. F.; Belcadi, S. J. Hazard. Mater. 2008, 155, 153-163.

[7]. Gupta, V. K.; Suhas, null. J. Environ. Manage. 2009, 90, 2313–2342.

[8]. Golder, A. K.; Hridaya, N.; Samanta, A. N.; Ray, S. J. Hazard. Mater. 2005, 127, 134-140.

[9]. Merzouk, B.; Madani, K.; Sekki, A. Desalination. 2010, 250, 573-577.

[10]. Alinsafi, A.; Khemis, M.; Pons, M. N.; Leclerc, J. P.; Yaacoubi, A.; Benhammou, A.; Nejmeddine, A. Chem. Eng. Process. Intensif. 2005, 44, 461-470.

[11]. Zaviska, F.; Drogui, P.; Blais, J. F.; Mercier, G.; Lafrance, P. J. Hazard. Mater. 2011, 185, 1499-1507.

[12]. Garg, K. K.; Prasad, B. J. Environ. Chem. Eng. 2016, 4, 178-190.

[13]. Mollah, M. Y.; Morkovsky, P.; Gomes, J. A.; Kesmez, M.; Parga, J.; Cocke, D. L. J. Hazard. Mater. 2004, 114, 199-210.

[14]. Adeogun, A. I.; Balakrishnan, R. B. Appl. Water Sci. 2017, 7, 1711-1723.

[15]. Bazrafshan, E.; Moein, H.; Kord Mostafapour, F.; Nakhaie, S. J. Chem. 2012, 2013, 1-8.

[16]. Drogui, P.; Blais, J. F.; Mercier, G. Recent Patents Eng. 2007, 1, 257-272.

[17]. Kobya, M.; Can, O. T.; Bayramoglu, M. J. Hazard. Mater. 2003, 100, 163-178.

[18]. Daneshvar, N.; Oladegaragoze, A.; Djafarzadeh, N. J. Hazard. Mater. 2006, 129, 116-122.

[19]. Holt, P. K.; Barton, G. W.; Mitchell, C. A. Chemosphere. 2005, 59, 355-367.

[20]. Nariyan, E.; Sillanpaa, M.; Wolkersdorfer, C. Sep. Purif. Technol. 2017, 177, 363-373.

[21]. Majdi, M. R.; Danaee, I.; Nikmanesh, S. Bulg. Chem. Commun. 2016, 48, 628-635.

[22]. Nongbe, M. C.; Bretel, G.; Ekou, T.; Ekou, L.; Yao, K. B.; Grognec, E.; Felpin, F. Cellulose 2018, 25, 4043-4055.

[23]. Vasudevan, S.; Lakshmi, J. Environ. Eng. Sci. 2012, 29, 563-572.

[24]. Chen, X.; Chen, G.; Yue, P. L. Sep. Purif. Technol. 2000, 19, 65-76.

[25]. Tir, M.; Moulai-Mostefa, N. J. Hazard. Mater. 2008, 158, 107-115.

[26]. Pajootan, E.; Arami, M.; Mahmoodi, N. M. J. Taiwan Inst. Chem. E. 2012, 43, 282-290.

[27]. Mohammadlou, N.; Rasoulifard, M. H.; Vahedpour, M.; Eskandarian, M. R. J. Appl. Chem. Res. 2014, 4, 123-142.

[28]. Ho, Y. S. J. Hazard. Mater. 2006, 136, 681-689.

[29]. Miron, A. R.; Rikabi, A. K. K.; Niculae, A. G.; Tanczos, S. K. Rev. Chim. Buchar. 2015, 66, 6-12.

[30]. Mkpenie, V. N.; Abakedi, O. U. Curr. Res. Chem. 2015, 7, 34-43.

[31]. Song, P.; Yang, Z.; Zeng, G.; Yang, X.; Xu, H.; Huang, J.; Wang, L. Water Air Soil Poll. 2015, 226, 1-12.

[32]. Kamaraj, R.; Ganesan P.; Vasudevan, S. J. Electrochem. Sci. Eng. 2014, 4(4), 187-201.

[33]. Samide, A.; Tutunaru, B.; Tigae, C.; Efrem, R.; Moanta, A.; Dragoi, M. Environ. Prot. Eng. 2014, 40, 93-104.

[34]. Adeogun, A. I.; Balakrishnan, R. B. J. Electrochem. Sci. Eng. 2016, 6, 199-213.

Supporting Agencies

Institut National Polytechnique Houphouët-Boigny, Yamoussoukro, Côte d’Ivoire
Most read articles by the same author(s)

Dimensions - Altmetric - scite_ - PlumX

Downloads and views


Download data is not yet available.


Metrics Loading ...
License Terms

License Terms


Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License ( By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License ( are administered by Atlanta Publishing House LLC (European Journal of Chemistry).