European Journal of Chemistry 2018, 9(4), 322-330 | doi: https://doi.org/10.5155/eurjchem.9.4.322-330.1748 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Quinazolin derivatives as emerging alpha-glucosidase inhibitors


Ashok Reddy Ankireddy (1) orcid , Rambabu Gundla (2,*) orcid , Tuniki Balaraju (3) orcid , Venkanna Banothu (4) orcid , Krishna Prasad Gundla (5) orcid , Uma Addepally (6) orcid , Jithendra Chimakurthy (7) orcid

(1) Department of Chemistry, Gitam University, Hyderabad, Rudraram Mandal, Sangareddy District, Patancheru, Hyderabad, Telangana 502329, India
(2) Department of Chemistry, Gitam University, Hyderabad, Rudraram Mandal, Sangareddy District, Patancheru, Hyderabad, Telangana 502329, India
(3) Department of Chemistry, Birla Institute of Technology, Mesra, Jharkhand 835215, India
(4) Centre for Biotechnology (CBT), Institute of Science & Technology (IST), Jawaharlal Nehru Technological University Hyderabad (JNTUH), Kukatpally, Hyderabad, Telangana State, 500085, India
(5) Department of Chemistry, Gitam University, Hyderabad, Rudraram Mandal, Sangareddy District, Patancheru, Hyderabad, Telangana 502329, India
(6) Centre for Biotechnology (CBT), Institute of Science & Technology (IST), Jawaharlal Nehru Technological University Hyderabad (JNTUH), Kukatpally, Hyderabad, Telangana State, 500085, India
(7) Department of Pharmaceutical Sciences, Vignan’s Foundation for Science, Technology and Research Vadlamudi, Guntur, Andhra Pradesh 522213, India
(*) Corresponding Author

Received: 29 May 2018 | Revised: 01 Sep 2018 | Accepted: 06 Sep 2018 | Published: 31 Dec 2018 | Issue Date: December 2018

Abstract


A series of C-7 substituted-2-morpholino-N-(pyridin-2-ylmethyl)quinazolin-4-amine have been synthesized and biochemical assay was examined against α-glucosidase function inhibition activity. A structure activity and structure property relationship study was experimented to surface the new hit compound. This study led to the identification of C-7substituted quinazolines with minimum inhibitory concentrations (MICs) in the preffered micromolar range in addition with interesting physicochemical properties. Biological evaluation yielded eight analogs which rose with significant α-glucosidase inhibition potency (IC50 values < 2 μM, where reference compound (Acarbose) potency value is IC50 = 0.586 uM) and could be promising candidates for further lead optimization.


Keywords


Diabetes; Acarbose; Inhibitors; Inflammation; Alpha-glucosidase; Quninazoline derivatives

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.9.4.322-330.1748

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 863 times | icon graph PDF Article downloaded 259 times

Funding information


Science and Engineering Research Board (SERB) India and Gandhi Institute of Technology and Management (GITAM) University School of Science, Departmet of Chemistry, Hyderabad

Citations

/


[1]. A. R. Ankireddy, R. Syed, R. Gundla, K. L. Manasa, C. V. R. Reddy, S. Yatam, K. Paidikondala
Kumada Cross Coupling Reaction for the Synthesis of Quinazoline Derivatives, Evaluation of Their Antibacterial Activity and Docking Studies
Russian Journal of General Chemistry  89(12), 2544, 2019
DOI: 10.1134/S107036321912034X
/


[2]. A. Reddy Ankireddy, K. Paidikondala, R. Syed, R. Gundla, Ch. Venkata Ramana Reddy, T. Ganapathi
Synthesis of Chiral 3,3ʹ-Disubstituted (S)-BINOL Derivatives via the Kumada and Suzuki Coupling and Their Antibacterial Activity
Russian Journal of General Chemistry  90(8), 1507, 2020
DOI: 10.1134/S1070363220080198
/


[3]. Samira Ansari, Maryam Mohammadi-Khanaposhtani, Mohammad Sadegh Asgari, Ensieh Nasli Esfahani, Mahmood Biglar, Bagher Larijani, Hossein Rastegar, Haleh Hamedifar, Mohammad Mahdavi, Recep Tas, Parham Taslimi
Design, synthesis, in vitro and in silico biological assays of new quinazolinone-2-thio-metronidazole derivatives
Journal of Molecular Structure  1244, 130889, 2021
DOI: 10.1016/j.molstruc.2021.130889
/


References


[1]. Geiss, L. S.; Wang, J.; Cheng, Y. J.; Thompson, T. J.; Barker, L.; Li, Y.; Albright, A. L.; Gregg, E. W. Jama 2014, 312, 1218-1226.
https://doi.org/10.1001/jama.2014.11494

[2]. Ferreres, F.; Gil-Izquierdo, A.; Vinholes, J.; Silva, S. T.; Valentao, P.; Andrade, P. B. Food Chem. 2012, 134, 894-904.
https://doi.org/10.1016/j.foodchem.2012.02.201

[3]. Bruni, C.; Sica, V.; Auricchio, F.; Covelli, I. Biochim. Biophys. Acta (BBA)-Enzymol. 1970, 212, 470-477.

[4]. Garlapati, R.; Pottabathini, N.; Gurram, V.; Chaudhary, A. B.; Chunduri, V. R.; Patro, B. Tetrahedron Lett. 2012, 53, 5162-5166.
https://doi.org/10.1016/j.tetlet.2012.07.061

[5]. Garlapati, R.; Pottabathini, N.; Gurram, V.; Kasani, K. S.; Gundla, R.; Thulluri, C.; Machiraju, P. K.; Chaudhary, A. B.; Addepally, U.; Dayam, R. Org. Biomol. Chem. 2013, 11, 4778-4791.
https://doi.org/10.1039/c3ob40636a

[6]. Chandrika, P. M.; Yakaiah, T.; Rao, A. R. R.; Narsaiah, B.; Reddy, N. C.; Sridhar, V.; Rao, J. V. Eur. J. Med. Chem. 2008, 43, 846-852.
https://doi.org/10.1016/j.ejmech.2007.06.010

[7]. Ram, V. J.; Tripathi, B. K.; Srivastava, A. K. Bioorg. Med. Chem. 2003, 11, 2439-2444.
https://doi.org/10.1016/S0968-0896(03)00142-1

[8]. Koh, K. K.; Park, S. M.; Quon, M. J. Circulation 2008, 117, 3238-3249.
https://doi.org/10.1161/CIRCULATIONAHA.107.741645

[9]. Saltiel, A. R.; Olefsky, J. M. Diabetes 1996, 45, 1661-1669.
https://doi.org/10.2337/diab.45.12.1661

[10]. De Melo, E. B.; Gomes, A. S.; Carvalho, I. Tetrahedron 2006, 62, 10277-10302.
https://doi.org/10.1016/j.tet.2006.08.055

[11]. Landgraf, R. Drugs Aging 2000, 17, 411-425.
https://doi.org/10.2165/00002512-200017050-00007

[12]. Sinclair, A. J. International textbook of Diabetes mellitus, Wiley, Worcestershire, United Kingdom, 2004.

[13]. Wan, Z. K.; Wacharasindhu, S.; Levins, C. G.; Lin, M.; Tabei, K.; Mansour, T. S. J. Org. Chem. 2007, 72, 10194-10210.
https://doi.org/10.1021/jo7020373

[14]. Goto, S.; Tsuboi, H.; Kanoda, M.; Mukai, K.; Kagara, K. Org. Proc. Res. Dev. 2003, 7, 700-706.
https://doi.org/10.1021/op0340661

[15]. Friesner, R. A.; Murphy, R. B.; Repasky, M. P.; Frye, L. L.; Greenwood, J. R.; Halgren, T. A.; Sanschagrin, P. C.; Mainz, D. T. J. Med. Chem. 2006, 49, 6177-6196.
https://doi.org/10.1021/jm051256o

[16]. Rosenstock, J.; Brazg, R.; Andryuk, P. J.; Lu, K.; Stein, P.; Study, S. Clin. Therap. 2006, 28, 1556-1568.
https://doi.org/10.1016/j.clinthera.2006.10.007

[17]. Yamaguchi, T.; Sakairi, K.; Yamaguchi, E.; Tada, N.; Itoh, A. RSC Adv. 2016, 6, 56892-56895.
https://doi.org/10.1039/C6RA04073J

[18]. Ghavami, A.; Johnston, B. D.; Pinto, B. M. J. Org. Chem. 2001, 66, 2312-2317.
https://doi.org/10.1021/jo001444g

[19]. Andrews, J. S.; Weimar, T.; Frandsen, T. P.; Svensson, B.; Pinto, B. M. J. Am. Chem. Soc. 1995, 117, 10799-10804.
https://doi.org/10.1021/ja00149a002

[20]. Flanagan, P. R.; Forstner, G. G. Biochem. J. 1978, 173, 553-563.
https://doi.org/10.1042/bj1730553

[21]. Balaraju, T.; Kumar, A.; Bal, C.; Chattopadhyay, D.; Jena, N.; Bal, N. C.; Sharon, A. Struc. Chem. 2013, 24, 1499-1512.
https://doi.org/10.1007/s11224-012-0181-1

[22]. Khan, I.; Ibrar, A.; Abbas, N.; Saeed, A. Eur. J. Med. Chem. 2014, 76, 193-244.
https://doi.org/10.1016/j.ejmech.2014.02.005

[23]. Gurram, V.; Garlapati, R.; Thulluri, C.; Madala, N.; Kasani, K. S.; Machiraju, P. K.; Doddapalla, R.; Addepally, U.; Gundla, R.; Patro, B. Med. Chem. Res. 2015, 24, 2227-2237.
https://doi.org/10.1007/s00044-014-1293-5

[24]. Iino, T.; Sasaki, Y.; Bamba, M.; Mitsuya, M.; Ohno, A.; Kamata, K.; Hosaka, H.; Maruki, H.; Futamura, M.; Yoshimoto, R. Bioorg. Med. Chem. Lett. 2009, 19, 5531-5538.
https://doi.org/10.1016/j.bmcl.2009.08.064

[25]. Thiyagarajan, A.; Salim, M. T.; Balaraju, T.; Bal, C.; Baba, M.; Sharon, A. Bioorg. Med. Chem. Lett. 2012, 22, 7742-7747.
https://doi.org/10.1016/j.bmcl.2012.09.072

[26]. Gurram, V.; Akula, H. K.; Garlapati, R.; Pottabathini, N.; Lakshman, M. K. Adv. Syn. Catal. 2015, 357, 451-462.
https://doi.org/10.1002/adsc.201400889

[27]. Liu, J. F.; Lee, J.; Dalton, A. M.; Bi, G.; Yu, L.; Baldino, C. M.; McElory, E.; Brown, M. Tetrahedron Lett. 2005, 46, 1241-1244.
https://doi.org/10.1016/j.tetlet.2005.01.008

[28]. Hikawa, H.; Ino, Y.; Suzuki, H.; Yokoyama, Y. J. Org. Chem. 2012, 77, 7046-7051.
https://doi.org/10.1021/jo301282n

[29]. Garlapati, R.; Pottabathini, N.; Gurram, V.; Kasani, K. S.; Gundla, R.; Thulluri, C.; Machiraju, P. K.; Chaudhary, A. B.; Addepally, U.; Dayam, R.; Chunduri, V. R.; Patro, B. Org. Biomol. Chem. 2013, 11, 4778-4791.
https://doi.org/10.1039/c3ob40636a

[30]. Kasula, M.; Balaraju, T.; Toyama, M.; Thiyagarajan, A.; Bal, C.; Baba, M.; Sharon, A. Chem. Med. Chem. 2013, 8, 1673-1680.

[31]. Balaraju, T.; Kumar, A.; Bal, C.; Chattopadhyay, D.; Jena, N.; Bal, N. C.; Sharon, A. Struc. Chem. 2013, 24(5), 1499-1512.
https://doi.org/10.1007/s11224-012-0181-1

[32]. Bal, N. C.; Jena, N.; Sopariwala, D.; Balaraju, T.; Shaikh, S.; Bal, C.; Sharon, A.; Gyorke, S.; Periasamy, M. Biochem. J. 2011, 435(2), 391-399.
https://doi.org/10.1042/BJ20101771

[33]. Thiyagarajan, A.; Salim, M. T. A.; Balaraju, T.; Bal, C.; Baba, M.; Sharon, A. Bioorg. Med. Chem. Lett. 2012, 22(24), 7742-7747.
https://doi.org/10.1016/j.bmcl.2012.09.072

[34]. Kumar, A.; Chakravarty, H.; Bal, N. C.; Balaraju, T.; Jena, N.; Misra, G.; Bal, C.; Balaraju, T.; Jena, N.; Misra, G.; Pieroni, E.; Periasamy, M.; Sharon, A. Mol. Biosys. 2013, 9(7), 1949-1957.
https://doi.org/10.1039/c3mb25588c

[35]. Bal, N. C.; Jena, N.; Chakravarty, H.; Kumar, A.; Chi, M.; Balaraju, T.; Rawale, S. V.; Sharon, A.; Periasamy, M. Biopolymers 2015, 103(1), 15-22.
https://doi.org/10.1002/bip.22534

[36]. Talasila, M.; Bavirisetti, H.; Chimakurthy, J.; Candasamy, M. J. Health Sci. 2014, 4(3), 162-168.
https://doi.org/10.17532/jhsci.2014.163


How to cite


Ankireddy, A.; Gundla, R.; Balaraju, T.; Banothu, V.; Gundla, K.; Addepally, U.; Chimakurthy, J. Eur. J. Chem. 2018, 9(4), 322-330. doi:10.5155/eurjchem.9.4.322-330.1748
Ankireddy, A.; Gundla, R.; Balaraju, T.; Banothu, V.; Gundla, K.; Addepally, U.; Chimakurthy, J. Quinazolin derivatives as emerging alpha-glucosidase inhibitors. Eur. J. Chem. 2018, 9(4), 322-330. doi:10.5155/eurjchem.9.4.322-330.1748
Ankireddy, A., Gundla, R., Balaraju, T., Banothu, V., Gundla, K., Addepally, U., & Chimakurthy, J. (2018). Quinazolin derivatives as emerging alpha-glucosidase inhibitors. European Journal of Chemistry, 9(4), 322-330. doi:10.5155/eurjchem.9.4.322-330.1748
Ankireddy, Ashok, Rambabu Gundla, Tuniki Balaraju, Venkanna Banothu, Krishna Prasad Gundla, Uma Addepally, & Jithendra Chimakurthy. "Quinazolin derivatives as emerging alpha-glucosidase inhibitors." European Journal of Chemistry [Online], 9.4 (2018): 322-330. Web. 25 Jul. 2021
Ankireddy, Ashok, Gundla, Rambabu, Balaraju, Tuniki, Banothu, Venkanna, Gundla, Krishna, Addepally, Uma, AND Chimakurthy, Jithendra. "Quinazolin derivatives as emerging alpha-glucosidase inhibitors" European Journal of Chemistry [Online], Volume 9 Number 4 (31 December 2018)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.9.4.322-330.1748

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2018, 9(4), 322-330 | doi: https://doi.org/10.5155/eurjchem.9.4.322-330.1748 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2021  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2021 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.