European Journal of Chemistry

Synthesis, crystal structures, substitutional and comparative structural analysis of copper diphosphates LiNaCuP2O7, LiKCuP2O7 and Rb0.5Na1.5CuP2O7


Main Article Content

Ines Fitouri
Habib Boughzala


The title compounds are members of the M2O-CuO-P2O5 system (M = Li, Na, K and Rb), where the lithium, sodium, potassium, rubidium and cesium phases have already been structurally characterized. The studied diphosphates LiNaCuP2O7, LiKCuP2O7 and Rb0.5Na1.5CuP2O7 belong to a large family of materials of general formula, MM’CuP2O7 (M, M’ = Monovalent cation) where the elements M and M’ ionic radii are decisive in the structural type determination. They were synthesized by solid-state reactions. The X-ray structural analysis show that these compounds crystallize in the P21/n monoclinic lattice where the CuO5 pyramidal square are linked to nearly eclipsed P2O7 groups by corner sharing to build up corrugated layers [CuP2O7]2- extending perpendicularly to [010]. The Li+, Na+, K+ and Rb+ cations reside in the interlayer space and in cavities delimited by the anionic network. In this study, the synthesis, the structure, the powder diffraction, the infrared spectroscopy, the thermal analysis (DTA/TGA) and a structural comparison are presented. The structural models were validated by Bond Valence-Sum (BVS) and charge distribution (CHARDI) analysis.

icon graph This Abstract was viewed 1421 times | icon graph Article PDF downloaded 676 times icon graph Article CIF FILE downloaded 0 times icon graph Article CIF FILE downloaded 0 times icon graph Article CIF FILE downloaded 0 times

How to Cite
Fitouri, I.; Boughzala, H. Synthesis, Crystal Structures, Substitutional and Comparative Structural Analysis of Copper Diphosphates LiNaCuP2O7, LiKCuP2O7 and Rb0.5Na1.5CuP2O7. Eur. J. Chem. 2018, 9, 258-268.

Article Details

Crossref - Scopus - Google - European PMC

[1]. Dupre, N.; Gaubicher, J.; Le Mercrier, T.; Wallez, G.; Angenault, J.; Quarton. M. Solid State Ionics 2001, 140, 209-221.

[2]. Kurek, P.; Nowinski, J. L.; Jakubowski, W. Solid State Ionics 1989, 36, 243-246.

[3]. Etheredge, K. M. S.; Hwu, S. J. Inorg. Chem. 1995, 34, 1495-1499.

[4]. ElMaadi, A.; Boukhari, A.; Holt, E. M. J. Alloys Compd. 1995, 223, 13-17.

[5]. Prabaharan, S. R. S.; Michael, M. S.; Radhakrishna, S.; Julien, C. J. Mater. Chem. 1997, 7, 1791-1796.

[6]. Kim, S. W.; Seo, D. H.; Ma, X.; Ceder, G.; Kang, K. Adv. Energy Mater. 2012, 2, 710-721.

[7]. Coelho, A. A. TOPAS, Version 4.2 (Computer Software), Coelho Software, 2009.

[8]. Sheldrick, G. M. Acta Cryst. A 2008, 64, 112‐122.

[9]. Sheldrick, G. M. Acta Cryst. C 2015, 71, 3-8.

[10]. Hubschle, C. B.; Sheldrick, G. M.; Dittrich, B. J. Appl. Cryst. 2012, 44, 1281-1284.

[11]. ICSD 2017. Inorganic Crystal Structure Database. FIZ-Karlsruhe, Germany.

[12]. Fitouri, I.; Boughzala H. Acta Cryst. E 2018, 74, 109-112.

[13]. Brown, I. D. Phys. Chem. Minerals 1987, 15, 30-34.

[14]. Hoppe, R.; Voigt, S.; Glaum, H.; Kissel, J.; Muller, H. P.; Bernet, K. J. Less-Common Met. 1989, 156, 105-122.

[15]. Nespolo. M. CHARDT-IT, A Program to Compute Charge Distributions and Bond Valences in Non-Molecular Crystalline Structures, LCM3 B, University Henri Poincare Nancy I, France, 2001.

[16]. Nespolo, M.; Eon, J. G. Acta Cryst. B 2001, 57, 652-664.

[17]. Brandenburg, K. DIAMOND. 3. 1, Crystal Impact GbR, Bonn, Germany, 2008.

[18]. Toby, B. H. EXPGUI, J. Appl. Cryst. 2001, 34, 210-213.

[19]. Chernyatieva, A. P.; Krivovichev, S. V.; Spiridonova, D. V. Proceedings of the XX Russian Conference of Young Scientists in Memory of the Corresponding Member of the Academy of Sciences of the USSR, K. O. Kratts, 2009.

[20]. Shvanskaya, L. V.; Yakubovich, O. V.; Urusov, V. S. Dokl. Phys. Chem. 2012, 442, 19-26.

[21]. Addison, A. W.; Rao, T. N.; Reedijk, J.; Van Rijn, J.; Verschoor, G. C. J. Chem. Soc. Dalton Trans. 1984, 3, 1349-1356.

[22]. Bouhassine, M. A.; Boughzala, H. Acta Cryst. E 2014, 70, i6-i6.

[23]. Spirlet, M. R.; Rebizant, J.; Liegeois-Duyckaerts, M. Acta Cryst. C 1993, 49, 209-211.

[24]. Gopalakrishna, G. S.; Mahesh, M. J.; Ashamanjari, K. G.; Prasad, J. S. Mater. Res. Bull. 2008, 43, 1171-1178.

[25]. Erragh, F.; Boukhari, A.; Abraham, F.; Elouadi, B. J. Solid State Chem. 1995, 120, 23-31

[26]. Bennazha, J.; Boukhari, A.; Holt, E. M. Acta Cryst. C 2002, 58, 87-89.

[27]. Keates, A. C.; Wang, Q.; Weller, M. T. J. Solid State Chem. 2014, 210, 10-14.

[28]. Chernyatieva, A. P.; Krivovichev, S. V.; Spiridonova, D. V. Book of Abstracts VI International Conference "Inorganic Materials" Dresden: Elsevier, 2008, 3-143.

[29]. Mannasova, A. A.; Chernyatieva, A. P.; Krivovichev, S. V. Z. Kristallogr. 2016, 231, 65-69.

Supporting Agencies

Université de Tunis El Manar, 2092 Manar II Tunis, Tunisia.
Most read articles by the same author(s)

Dimensions - Altmetric - scite_ - PlumX

Downloads and views


Download data is not yet available.


Metrics Loading ...
License Terms

License Terms


Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License ( By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License ( are administered by Atlanta Publishing House LLC (European Journal of Chemistry).