European Journal of Chemistry

Synthesis of nanocellulose/cobalt oxide composite for efficient degradation of Rhodamine B by activation of peroxymonosulfate


Main Article Content

Faouzia Khili
Amel Dakhlaoui Omrani


In recent years, nanofibrous materials derived from biopolymers have attracted more interest due to their numerous applications. In our study, a simple composite of cellulose nanocrystals, and cobalt oxide nanoparticles was elaborated using sodium borohydride as a chemical reducer. It has been shown that Co3O4 nanoparticles were grown on the surface of cellulose nanocrystals. An important quantity of cobalt oxide nanoparticles was detected using ICP-OES (13.5 g contained in 100 mg of the composite). The size, the morphology and the thermal stability of the composite and the obtained nanoparticles were studied using X-ray powder diffraction, Fourier-transform infrared spectroscopy, Ultraviolet-Visible spectrophotometry, Scanning electron microscopic and Transmission electron microscopic. Our obtained material was used for the degradation of Rhodamine B and it was succeeded in degradation of Rhodamine B within very short period of time (16 min). The catalytic degradation of Rhodamine B was investigated and analyzed with UV-Visible absorption spectra.

icon graph This Abstract was viewed 1276 times | icon graph Article PDF downloaded 565 times

How to Cite
Khili, F.; Omrani, A. D. Synthesis of Nanocellulose Cobalt Oxide Composite for Efficient Degradation of Rhodamine B by Activation of Peroxymonosulfate. Eur. J. Chem. 2019, 10, 19-25.

Article Details

Crossref - Scopus - Google - European PMC

[1]. Klemm, D.; Heublein, B.; Fink, H. P.; Bohn, A. Angew. Chem. Int. Ed. 2005, 44, 3358-3393.

[2]. Sjostrom, E, Wood Chemistry: Fundamentals and applications, Academic Press Inc., England, 1993.

[3]. George, J.; Sabapathi, S. N.; Siddaramaiah, Water Soluble Polymer-Based Nanocomposites Containing Cellulose Nanocrystals. In: Thakur V., Hakur M. (eds) Eco-friendly Polymer Nanocomposites. Advanced Structured Materials, vol. 75, pp. 259-293, Springer, New Delhi, 2015.

[4]. Eichhorn, S. J.; Baillie, C. A.; Zafeiropoulos, N.; Mwaikambo, L. Y.; Ansell , M. P.; Dufresne, A.; Entwistle, K. M.; Herrera-Franco, P. J.; Escamilla, G. C.; Groom, L. H.; Hughes, M.; Hill, C.; Rials, T. G.; Wild, P. M. J. Mater. Sci. 2001, 36, 2107-2131.

[5]. Masaoka, S.; Ohe, T.; Sakota, N. J. Ferment. Bioeng. 1993, 75, 18-22.

[6]. Habibi, Y.; Lucia, L. A.; Rojas, O. J. Chem. Rev. 2010, 110, 3479-3500.

[7]. Ahmad, N.; Wahab, R.; Al-Omar, S. Eur. J. Chem. 2014, 5(2), 247-251.

[8]. Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Young, B. J. Chem. Soc. Rev. 2011, 40, 3941-3994.

[9]. Iwamoto, S.; Kai, W.; Isogai, A.; Iwata, T. Biomacromol. 2009, 10, 2571-2576.

[10]. Lahiji, R. R.; Xu, X.; Reifenberger, R.; Raman, A.; Rudie, A.; Moon, R. J. Langmuir 2010, 26, 4480-4488.

[11]. Sturcova, A.; Davies, G. R.; Eichhorn, S. J. Biomacromol. 2005, 6, 1055-1061.

[12]. Revol, J. F.; Bradford, H.; Giasson, J.; Marchessault, R. H.; Gray, D. G. Int. J. Biol. Macromol. 1992, 14, 170-172.

[13]. Orts, W. J.; Godbout, L.; Marchessault, R. H.; Revol, J. F. Macromol. 1998, 31, 5717-5725.

[14]. Azizi, S.; Alloin, F.; Sanchez, J. Y.; El Kissi, N.; Dufresne, A. Macromol. 2004, 37, 1386-1393.

[15]. Araki, J.; Wada, M.; Kuga, S.; Okano, T. J. Wood Sci. 1999, 45, 258-261.

[16]. Romany, M.; Shuping, D.; Hirani, A.; Yong, W. L. ACS symposium series. Vol. 1017. Oxford University Press, Cellulose nanocrystals for drug delivery; pp. 81-91, 2009.

[17]. Lam, E.; Male, K. B.; Chong, J. H.; Leung, A. C.; Luong, J. H. Trends Biotechnol. 2012, 30, 283-290.

[18]. Taheri, A.; Mohammadi, M. Chem. Biol. Drug. Des. 2015, 86, 102-106.

[19]. Jackson, J. K.; Letchford. K.; Wasserman, B. Z.; Ye, L.; Hamad, W. Y.; Burt, H. M. Int. J. Nanomedic. 2011, 6, 321-330.

[20]. Kandalkar, S. G.; Dhawale, D. S.; Kim, C. K.; Lokhande, C. D. Synth. Met. 2010, 160, 1299-1302.

[21]. Yoshino, T.; Baba, N. Sol. Energ. Mat. Sol. C 1995, 39, 391-397.

[22]. Okabe, H.; Akimitsu, J.; Kubodera, T.; Matoba, M.; Kyomen, T.; Itoh, M. Phys. B Condens. Matter. 2006, 378-380, 863-864.

[23]. Rashkova, V.; Kitora, S.; Konstantinov, I.; Vitahov, T. Electrochim. Acta 2002, 47, 1555-1560.

[24]. Ding, Y.; Wang, Y.; Su, L.; Bellagamba, M.; Zhang, H.; Lei, Y. Biosens. Bioelectron. 2010, 26, 542-548.

[25]. Buratti, S.; Brunetti, B.; Mannino, S. Talanta 2008, 76, 454-457.

[26]. Xia, Y. S.; Dai, H. X.; Jiang, H. Y.; Zhang, L. Catal. Commun. 2010, 11, 1171-1175.

[27]. Hou, Y.; Ndamanisha, J. C.; Guo, L. P.; Peng, X. J.; Bai, J. Electrochim. Acta 2009, 54, 6166-6171.

[28]. Salimi, A.; Hallaj, R.; Soltanian, S.; Mamkhezri, H. Anal. Chim. Acta 2007, 594, 24-31.

[29]. Salimi, A.; Mamkhezri, H.; Hallaj, R.; Soltanian, S. Sens Actuators B 2008, 129, 246-254.

[30]. Qi, Y. C.; Zhao, Y. B.; Wu, Z. S. Mater. Chem. Phys. 2008, 110, 457-462.

[31]. Shinde, V. R.; Mahadik, S. B.; Gujar, T. P.; Lokhande, C. D. Appl. Surf. Sci. 2006, 252, 7487-7492.

[32]. Xia, X. H.; Tu, J. P.; Xiang, J. Y.; Huang, X. H.; Wang, X. L.; Zhao, X. B. Power Sources 2010, 195, 2014-2022.

[33]. Casella, I. G.; Guascito, M. R. Electroanal. J. Chem. 1999, 476, 54-63.

[34]. Casella, I. G.; Gatta, M.; Electro. Anal. Chem. 2002, 534, 31-38.

[35]. Casella, I. G. J. Electroanal. Chem. 2002, 520, 119-125.

[36]. Hao, M.; Pegah, K.; Foroo, S.; Pratik, U. J.; Julie, O.; Xue, M.; Christa, M.; Rattapol, P.; Jonathan, K.; Ameya, N.; Weilue, H. M.; Frost, C.; Heldt, C. H.; Lee, B. P. Acta Biomaterialia 2019, 83, 109-118.

[37]. Spataru, N.; Terashima, C.; Tokuhiro, K.; Sutanto, I.; Tryk, D. A.; Park, S. M.; Fujishima, A. J. Electrochem. Soc. 2003, 150, 337-334.

[38]. McNally, E. A.; Zhitomirsky, I.; Wilkinson, D. S. Mater. Chem. Phys. 2005, 91, 391-398.

[39]. Figgis, B. N. Introduction to Ligand Fields, Interscience, New York, London, Sydney, 1996.

[40]. Faouzia, K.; Joao, B.; Pedro, L. A.; Rabah, B.; Amel, D. O. Waste Biomass. Valori. 2018, 18, 1-15.

[41]. Windisch, C. F.; Exarhos, G. J.; Owings, R. R. J. Appl. Phys. 2004, 95, 5435-5442.

[42]. Navale, S. T.; Liu, C.; Gaikar, P.; Patil, V.; Sagar, R. U. R.; Du, B.; Mane, R. S.; Staler, F. Sens. Actuators B Chem. 2017, 245, 524-532.

[43]. Zhou, T.; Lu, P.; Zhang, Z.; Wang, Q.; Umar, A. Sens. Actuators B Chem. 2016, 235, 457-465.

[44]. Makhlouf, M. T.; Abu-Zied, B. M.; Mansoure, T. H. Fuel J. Nanopart. 2013, 2013, 1-7.

[45]. Monaam, B. A.; Alexandre, B.; Ahmed, A.; Brigitte, S.; Habib, E.;, Mokhtar F.; Sabine, S.; Rabah, B. Phys. Chem. Chem. Phys. 2017, 19, 6569-6578.

[46]. Akir, S.;, Abderrahmane, H.; Ahmed, A.; Yannick, C.; Rabah B.; Amel, D. O. Appl. Surf. Sci. 2017, 400, 461-470.

[47]. Abdel-Hady, A. Eur. J. Chem. 2013, 4(3), 292-296.

Most read articles by the same author(s)

Dimensions - Altmetric - scite_ - PlumX

Downloads and views


Download data is not yet available.


Metrics Loading ...
License Terms

License Terms


Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License ( By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License ( are administered by Atlanta Publishing House LLC (European Journal of Chemistry).