European Journal of Chemistry 2019, 10(2), 95-101 | doi: https://doi.org/10.5155/eurjchem.10.2.95-101.1847 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Structural and spectroscopic characterization and DFT studies of 2-amino-1,10-phenanthrolin-1-ium chloride


Sebile Işık Büyükekşi (1,*) orcid , Namık Özdemir (2) orcid , Abdurrahman Şengül (3) orcid

(1) Department of Chemistry, Faculty of Arts and Sciences, Zonguldak Bülent Ecevit University, Zonguldak, 67100, Turkey
(2) Department of Mathematics and Science Education, Faculty of Education, Ondokuz Mayıs University, Samsun, 55220, Turkey
(3) Department of Chemistry, Faculty of Arts and Sciences, Zonguldak Bülent Ecevit University, Zonguldak, 67100, Turkey
(*) Corresponding Author

Received: 11 Mar 2019 | Revised: 22 Apr 2019 | Accepted: 04 May 2019 | Published: 30 Jun 2019 | Issue Date: June 2019

Abstract


A versatile synthetic building block, 2-amino-1,10-phenanthrolin-1-ium chloride (L∙HCl) was synthesized and characterized by IR, 1H and 13C NMR DEPT analysis, UV/Vis and single-crystal X-ray diffraction technique. The molecular geometry, vibrational wavenumbers and gauge including atomic orbital (GIAO), 1H and 13C NMR chemical shifts values of the title compound in the ground state were obtained by using density functional theory (DFT/B3LYP) method with 6-311++G(d,p) basis set and compared with the experimental data. Electronic absorption spectrum of the salt was determined using the time-dependent density functional theory (TD-DFT) method at the same level. In the NMR and electronic absorption spectra calculations, the effect of solvent on the theoretical parameters was included using the default model with DMSO as solvent. The obtained theoretical parameters agree well with the experimental findings.


Keywords


Salt; Spectroscopy; DFT calculation; X-ray structure; Hydrogen bonding; 1,10-Phenanthroline

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.10.2.95-101.1847

Links for Article


| | | | | | |

| | | | | | |

| | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 846 times | icon graph PDF Article downloaded 258 times

Funding information


Turkish Scientific and Technical Research Council (TÜBİTAK) [Grant number 214Z090].

References


[1]. Guerfel, T.; Bdiri, M.; Jouini, A. J. Chem. Crystallogr. 2000, 30(12), 799-804.
https://doi.org/10.1023/A:1013228409413

[2]. Kanyo, Z. F.; Christianson, D. W. J. Biol. Chem. 1991, 266(7), 4264-4268.

[3]. Belarmino, M. K.; Cruz, V. F.; Lima, N. B. J. Mol. Model. 2014, 20, 2477, 1-7.
https://doi.org/10.1007/s00894-014-2477-0

[4]. Hammami, F.; Ghalla, H.; Nasr, S. Comput. Theor. Chem. 2015, 1070, 40-47.
https://doi.org/10.1016/j.comptc.2015.07.018

[5]. Lima, N. B.; Ramos, M. N. J. Mol. Struct. 2012, 1008, 29-34.
https://doi.org/10.1016/j.molstruc.2011.11.014

[6]. Abraham, R. J.; Mobli, M. Magn. Reson. Chem. 2007, 45(10), 865-877.
https://doi.org/10.1002/mrc.2060

[7]. Rusu, V. H.; da Silva, J. B. P.; Ramos, M. N. Vib. Spectrosc. 2008, 46(1), 52-56.
https://doi.org/10.1016/j.vibspec.2007.09.002

[8]. Lomas, J. S. Magn. Reson. Chem. 2014, 52(12), 745-754.
https://doi.org/10.1002/mrc.4130

[9]. Shan, N.; Batchelor, E.; Jones, W. Tetrahedron Lett. 2002, 43(48), 8721-8725.
https://doi.org/10.1016/S0040-4039(02)02140-8

[10]. Kao, H. C.; Hsu, C. J.; Hsu, C. W.; Lin, C. H.; Wang, W. J. Tetrahedron Lett. 2010, 51(29), 3743-3747.
https://doi.org/10.1016/j.tetlet.2010.05.039

[11]. Chen, Z. J.; Wang, L. M.; Zou, G.; Zhang, L.; Zhang, G. J.; Cai, X. F.; Teng, M. S. Dyes Pigments 2012, 94(3), 410-415.
https://doi.org/10.1016/j.dyepig.2012.01.024

[12]. Wang, W. J.; Sengul, A.; Luo, C. F.; Kao, H. C.; Cheng, Y. H. , Tetrahedron Lett. 2003, 44(37), 7099-7101.
https://doi.org/10.1016/S0040-4039(03)01710-6

[13]. Cheng, C. C.; Kuo, Y. N.; Chuang, K. S.; Luo, C. F.; Wang, W. J. Angew. Chem. Int. Ed. 1999, 38(9), 1255-1257.
https://doi.org/10.1002/(SICI)1521-3773(19990503)38:9<1255::AID-ANIE1255>3.0.CO;2-T

[14]. Davis, J. T. Angew. Chem. Int. Ed. 2004, 43(6), 668-698.
https://doi.org/10.1002/anie.200300589

[15]. Hirai, M.; Shinozuka, K.; Sawai, H.; Ogawa, S. Chem. Lett. 1992, 21(10), 2023-2026.
https://doi.org/10.1246/cl.1992.2023

[16]. Reed, J. E.; Neidle, S.; Vilar, R. Chem. Commun. 2007, 42, 4366-4368.
https://doi.org/10.1039/b709898g

[17]. Tan, J. H.; Gu, L. Q.; Wu, J. Y. Mini Rev. Med. Chem. 2008, 8(11), 1163-1178.
https://doi.org/10.2174/138955708785909880

[18]. Yıldız, U.; Sengul, A.; Kandemir, I.; Comert, F.; Akkoc, S.; Coban, B. Bioorg. Chem. 2019, 87, 70-77.
https://doi.org/10.1016/j.bioorg.2019.03.009

[19]. Polloni, L.; de Seni Silva, A. C.; Teixeira, S. C.; de Vasconcelos Azevedo, F. V. P.; Zoia, M. A. P.; da Silva, M. S.; Lima, P. M. A. P.; Correia, L. I. V.; do Couto Almeida, J.; da Silva, C. V. o, Biomed. Pharmacother. 2019, 112, 108586.
https://doi.org/10.1016/j.biopha.2019.01.047

[20]. Yu, B.; Rees, T. W.; Liang, J.; Jin, C.; Chen, Y.; Ji, L.; Chao, H. o, Dalton Trans. 2019, 48, 3914-3921.
https://doi.org/10.1039/C9DT00454H

[21]. Akerboom, S.; van den Elshout, J. J.; Mutikainen, I.; Siegler, M. A.; Fu, W. T.; Bouwman, E. Eur. J. Inorg. Chem. 2013, 36, 6137-6146.
https://doi.org/10.1002/ejic.201301000

[22]. Bezencon, J.; Wittwer, M. B.; Cutting, B.; Smiesko, M.; Wagner, B.; Kansy, M.; Ernst, B. J. Pharm. Biomed. Anal. 2014, 93, 147-155.
https://doi.org/10.1016/j.jpba.2013.12.014

[23]. Claus, K. G.; Rund, J. V. Inorg. Chem. 1969, 8(1), 59-63.
https://doi.org/10.1021/ic50071a014

[24]. Concepcion, J.; Just, O.; Leiva, A. M.; Loeb, B.; Rees, W. S. Inorg. Chem. 2002, 41(23), 5937-5939.
https://doi.org/10.1021/ic025719h

[25]. Corey, E.; Borror, A.; Foglia, T. J. Org. Chem. 1965, 30(1), 288-290.
https://doi.org/10.1021/jo01012a502

[26]. Engel, Y.; Dahan, A.; Rozenshine-Kemelmakher, E.; Gozin, M. J. Org. Chem. 2007, 72(7), 2318-2328.
https://doi.org/10.1021/jo062130h

[27]. Krapcho, A. P.; Sparapani, S.; Leenstra, A.; Seitz, J. D. Tetrahedron Lett. 2009, 50(26), 3195-3197.
https://doi.org/10.1016/j.tetlet.2009.01.138

[28]. Kumar, P.; Madyal, R. S.; Joshi, U.; Gaikar, V. G. Ind. Eng. Chem. Res. 2011, 50(13), 8195-8203.
https://doi.org/10.1021/ie101517j

[29]. Li, J.; Matsumoto, J.; Otabe, T.; Dohno, C.; Nakatani, K. Biorg. Med. Chem. 2015, 23(4), 753-758.
https://doi.org/10.1016/j.bmc.2014.12.062

[30]. Maqsood, S. R.; Islam, N.; Bashir, S.; Khan, B.; Pandith, A. H. J. Coord. Chem. 2013, 66(13), 2308-2315.
https://doi.org/10.1080/00958972.2013.800866

[31]. Hu, Z.; Miao, J.; Li, T.; Liu, M.; Murtaza, I.; Meng, H. Nano Energy 2018, 43, 72-80.
https://doi.org/10.1016/j.nanoen.2017.11.014

[32]. Zhang, H. R.; Jin, X. X.; Zhou, X.; Zhang, Y.; Leung, C. F.; Xiang, J. Cryst. Res. Technol. 2019, 54(1), 1800168.
https://doi.org/10.1002/crat.201800168

[33]. Buyukeksi, S. I.; Karatay, A.; Acar, N.; Kucukoz, B.; Elmali, A.; Sengul, A. Dalton Trans. 2018, 47(22), 7422-7430.
https://doi.org/10.1039/C8DT01135D

[34]. Buyukeksi, S. I.; Karatay, A.; Acar, N.; Kucukoz, B.; Elmali, A.; Sengul, A. J. Photochem. Photobiol. A: Chem. 2019, 372, 226-234.
https://doi.org/10.1016/j.jphotochem.2018.12.019

[35]. Buyukeksi, S. I.; Sengul, A.; Erdonmez, S.; Altindal, A.; Orman, E. B.; Ozkaya, A. R. Dalton Trans. 2018, 47(8), 2549-2560.
https://doi.org/10.1039/C7DT04713D

[36]. Zwart, M.; Bastiaans, H.; Van der Goot, H.; Timmerman, H. J. Med. Chem. 1991, 34(3), 1193-1201.
https://doi.org/10.1021/jm00107a045

[37]. Wang, W. J.; Chuang, K. S.; Luo, C. F.; Liu, H. Y. Tetrahedron Lett. 2000, 41(44), 8565-8568.
https://doi.org/10.1016/S0040-4039(00)01525-2

[38]. Fırıncı, R.; Gunay, M. E.; Ozdemir, N.; Dincer, M. J. Mol. Struct. 2017, 1146, 267-272.
https://doi.org/10.1016/j.molstruc.2017.06.012

[39]. Issa, T. B.; Ghalla, H.; Marzougui, S.; Benhamada, L. J. Mol. Struct. 2017, 1150, 127-134.
https://doi.org/10.1016/j.molstruc.2017.08.086

[40]. Ozdemir, N.; Kagit, R.; Dayan, O. Mol. Phys. 2016, 114(6), 757-768.
https://doi.org/10.1080/00268976.2015.1116715

[41]. Asath, R. M.; Rekha, T.; Premkumar, S.; Mathavan, T.; Benial, A. M. F. J. Mol. Struct. 2016, 1125, 633-642.
https://doi.org/10.1016/j.molstruc.2016.07.064

[42]. Bruker, APEX II, Bruker, Bruker AXS Inc. , Madison, Wisconsin, USA. 2014.

[43]. Bruker, SAINT, Bruker, Bruker AXS Inc. , Madison, Wisconsin, USA. 2013.

[44]. Bruker, SADABS, Bruker, Bruker AXS Inc. , Madison, Wisconsin, USA. 2014.

[45]. Sheldrick, G. M. Acta Crystallogr. Sect. A. Found. Adv. 2015, 71(1), 3-8.
https://doi.org/10.1107/S2053273314026370

[46]. Sheldrick, G. M. Acta Crystallogr. Sect. C: Struct. Chem. 2015, 71(1), 3-8.
https://doi.org/10.1107/S2053229614024218

[47]. Farrugia, L. J. J. Appl. Crystallogr. 2012, 45(4), 849-854.
https://doi.org/10.1107/S0021889812029111

[48]. Spek, A. L. Acta Crystallogr. Sect. D 2009, 65(2), 148-155.
https://doi.org/10.1107/S090744490804362X

[49]. Becke, A. D. J. Chem. Phys. 1993, 98(7), 5648-5652.
https://doi.org/10.1063/1.464913

[50]. Lee, C.; Yang, W.; Parr, R. G. Phys. rev. B 1988, 37(2), 785-789.
https://doi.org/10.1103/PhysRevB.37.785

[51]. Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54(2), 724-728.
https://doi.org/10.1063/1.1674902

[52]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr. , J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc. , Wallingford CT, 2004. Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Montgomery Jr, J.; Vreven, T.; Kudin, K.; Burant, J. Gaussian 03, Revision E. 01. 2004.

[53]. Dennington, R.; Keith, T.; Millam, J. G. Semichem Inc. 2007.

[54]. Andersson, M. P.; Uvdal, P. J. Phys. Chem. A 2005, 109(12), 2937-2941.
https://doi.org/10.1021/jp045733a

[55]. Ditchfield, R. J. Chem. Phys. 1972, 56(11), 5688-5691.
https://doi.org/10.1063/1.1677088

[56]. Wolinski, K.; Hinton, J. F.; Pulay, P. J. Am. Chem. Soc. 1990, 112(23), 8251-8260.
https://doi.org/10.1021/ja00179a005

[57]. Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. J. Chem. Phys. 1998, 108(11), 4439-4449.
https://doi.org/10.1063/1.475855

[58]. Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 1998, 109(19), 8218-8224.
https://doi.org/10.1063/1.477483

[59]. Cances, E.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 1997, 107(8), 3032-3041.
https://doi.org/10.1063/1.474659

[60]. Harvey, M. A.; Baggio, S.; Garland, M. T.; Baggio, R. Acta Crystallogr. C 2008, 64(9), 0489-0492.

[61]. Hensen, K.; Spangenberg, B.; Bolte, M. Acta Crystallogr. C 2000, 56(2), 208-210.
https://doi.org/10.1107/S0108270199013815

[62]. Muthulakshmi, S.; Kalaivani, D. Acta Crystallogr. E 2015, 71(7), 783-785.
https://doi.org/10.1107/S2056989015010737

[63]. Macrae, C.; Bruno, I.; Chisholm, J.; Edgington, P.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. J. Appl. Crystallogr. 2008, 41, 466-470.
https://doi.org/10.1107/S0021889807067908

[64]. Bernstein, J.; Davis, R. E.; Shimoni, L.; Chang, N. L. Angew. Chem. Int. Ed. Engl. 1995, 34(15), 1555-1573.
https://doi.org/10.1002/anie.199515551

[65]. Tanak, H.; Agar, A.; Yavuz, M. J. Mol. Model. 2010, 16(3), 577-587.
https://doi.org/10.1007/s00894-009-0574-2

[66]. Assefa, Z.; Gore, S. B. Bull. Chem. Soc. Ethiop. 2016, 30(2), 231-239.
https://doi.org/10.4314/bcse.v30i2.7

[67]. Günzler, H.; Gremlich, H. U. IR spectroscopy. An introduction. Wiley VCH: Weinheim, 2002.

[68]. Cruz, C.; Delgado, R.; Drew, M. G.; Felix, V. J. Org. Chem. 2007, 72(11), 4023-4034.
https://doi.org/10.1021/jo062653p

[69]. Park, C.; Simmons, H. J. Am. Chem. Soc. 1968, 90(9), 2431-2432.
https://doi.org/10.1021/ja01011a047

[70]. Koparir, P.; Sarac, K.; Orek, C.; Koparir, M. J. Mol. Struct. 2016, 1123, 407-415.
https://doi.org/10.1016/j.molstruc.2016.07.046

[71]. Pina, J.; Melo, J.; Pina, F.; Lodeiro, C.; Lima, J.; Parola, A. J.; Soriano, C.; Paz Clares, M.; Albelda, M. T.; Aucejo, R. , Inorg. Chem. 2005, 44, 7449-7458.
https://doi.org/10.1021/ic050733q

[72]. Jayabharathi, J.; Thanikachalam, V.; Perumal, M. V. Spectrochim. Acta A 2012, 95, 614-621.
https://doi.org/10.1016/j.saa.2012.04.059

[73]. O'Boyle, N. M.; Tenderholt, A. L.; Langner, K. M. J. Comput. Chem. 2008, 29(5), 839-845.
https://doi.org/10.1002/jcc.20823

[74]. Callister, W. D.; Rethwisch, D. G. Materials science and engineering: an introduction. John Wiley & Sons New York: 2007; Vol. 7.

[75]. Issa, T. B.; Sayari, F.; Ghalla, H.; Benhamada, L. J. Mol. Struct. 2018, 1178, 436-449.
https://doi.org/10.1016/j.molstruc.2018.10.033


Supporting information


The Supplementary Material for this article can be found online at: Supplementary files

How to cite


Büyükekşi, S.; Özdemir, N.; Şengül, A. Eur. J. Chem. 2019, 10(2), 95-101. doi:10.5155/eurjchem.10.2.95-101.1847
Büyükekşi, S.; Özdemir, N.; Şengül, A. Structural and spectroscopic characterization and DFT studies of 2-amino-1,10-phenanthrolin-1-ium chloride. Eur. J. Chem. 2019, 10(2), 95-101. doi:10.5155/eurjchem.10.2.95-101.1847
Büyükekşi, S., Özdemir, N., & Şengül, A. (2019). Structural and spectroscopic characterization and DFT studies of 2-amino-1,10-phenanthrolin-1-ium chloride. European Journal of Chemistry, 10(2), 95-101. doi:10.5155/eurjchem.10.2.95-101.1847
Büyükekşi, Sebile, Namık Özdemir, & Abdurrahman Şengül. "Structural and spectroscopic characterization and DFT studies of 2-amino-1,10-phenanthrolin-1-ium chloride." European Journal of Chemistry [Online], 10.2 (2019): 95-101. Web. 27 Feb. 2021
Büyükekşi, Sebile, Özdemir, Namık, AND Şengül, Abdurrahman. "Structural and spectroscopic characterization and DFT studies of 2-amino-1,10-phenanthrolin-1-ium chloride" European Journal of Chemistry [Online], Volume 10 Number 2 (30 June 2019)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.10.2.95-101.1847

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2019, 10(2), 95-101 | doi: https://doi.org/10.5155/eurjchem.10.2.95-101.1847 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2021  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2021 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.