European Journal of Chemistry

All-solid-state polymeric screen printed and carbon paste ion selective electrodes for determination of oxymetazoline in pharmaceutical dosage forms

Crossmark


Main Article Content

Mohamed Salem Rizk
Emad Mohamed Hussien
Rasha Tharwat El-Eryan
Amira Mohamed Daoud

Abstract

All-solid state potentiometric ion selective electrodes have the merits of being portable, small and suitable for small volume samples. Herein, disposable home-made screen printed polymeric ion selective electrode (SPE) is developed for determination of oxymetazoline (OXM) in pharmaceutical nasal drops and drug substance. Ion selective electrodes with optimal potentiometric response were achieved by careful selection of the ion exchanger and plasticizer. A screen printed electrode utilizing oxymetazoline-tetraphenyl borate (OXM-TPB) as an ion exchanger and dibutyl phthalate (DBP) as a plasticizer exhibited a Nernstian slope of 59.5±0.5 mV/decade (n=3) over the concentration range from 1×10-5 to 1×10-2 M OXM (r = 0.9999) with a detection limit of 5.0×10-6 M. The electrode is useful over a wide pH range from 4.0 to 8.0. The electrode showed a high selectivity for OXM against several common interfering ions. The potential interference from benzalkonium chloride was easily eliminated by treatment the sample with KI. Comparable potentiometric characteristics including linearity, detection limit, pH range and selectivity pattern were obtained with a carbon paste electrode (CPE) comprising same ion exchanger and plasticizer. The electrodes were successfully used for the assay of OXM in the drug substance and in the dosage form in presence of benzalkonium chloride with high accuracy (±2%) and precision (%RSD ˂2.5). The proposed method is simple, accurate and precise.


icon graph This Abstract was viewed 1948 times | icon graph Article PDF downloaded 698 times

How to Cite
(1)
Rizk, M. S.; Hussien, E. M.; El-Eryan, R. T.; Daoud, A. M. All-Solid-State Polymeric Screen Printed and Carbon Paste Ion Selective Electrodes for Determination of Oxymetazoline in Pharmaceutical Dosage Forms. Eur. J. Chem. 2019, 10, 273-280.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. The United States Pharmacopeia (USP), USP 39-NF 34 (2016), Rockville, MD, USA.

[2]. Martindale: The complete drug reference, Thirty-six edition, Royal Pharmaceutical Society of Great Britain, RPS, 2009.

[3]. Covington, T. R.; Pau, A. K. American Pharm. 1985, 25, 21-26.
https://doi.org/10.1016/S0160-3450(16)32692-7

[4]. Theia'a, N.; Mohammed, N. M.; Abdul-Jabar, P. A. Eur. Chem. Bull. 2015, 4, 372-377.

[5]. Abdel-Aziz, O.; El-Kosasy, A.; Magdy, N.; El Zahar, N. Spectrochim. Acta A 2014, 131, 59-66.
https://doi.org/10.1016/j.saa.2014.04.047

[6]. Othman, N. S.; Fathe, S. A. Rafidain J. Sci. 2013, 24, 84-95.

[7]. Al-Sabha, T. A. N.; Rasheed, B. A. Jordan J. Chem. 2011, 146, 1-9.

[8]. Palma, R. J.; Palkowetz, J. M. Anal. Lett. B, Clin. Biochem. Anal. 1981, 14, 357-362.
https://doi.org/10.1080/00032718108081411

[9]. Hoffmann, T. J.; Thompson, R. D.; Seifert, J. R. Drug Develop. Indus. Pharm. 1989, 15, 743-757.
https://doi.org/10.3109/03639048909058529

[10]. Hayes, F. J.; Baker, T. R.; Dobson, R. L. M.; Tsueda, M. S. J. Chromatog. A 1995, 692, 73-81.
https://doi.org/10.1016/0021-9673(94)00630-R

[11]. Sudsakorn, S.; Kaplan, L.; Williams, D. A. J. Pharm. Biomed. Anal. 2006, 40, 1273-1280.
https://doi.org/10.1016/j.jpba.2005.09.018

[12]. Golubitskii, G. B.; Basova, E. M.; Ivanov, V. M. J. Anal. Chem. 2008, 63, 875-880.
https://doi.org/10.1134/S1061934808090141

[13]. Garcia-Campana, A. M.; Sendra, J. M. B.; Vargas, M. P. B.; Baeyens, W. R. G.; Zhang, X. R. Anal. Chim. Acta 2004, 516, 245-249.
https://doi.org/10.1016/j.aca.2004.03.067

[14]. Wang, N. N.; Sha, Y. Q.; Tang, Y. H.; Yin, H. P.; Wu, X. Z. Luminescence 2009, 24, 178-182.
https://doi.org/10.1002/bio.1092

[15]. Issa, Y. M.; Zayed, S. I. M. Anal. Sci. 2004, 20, 297-300.
https://doi.org/10.2116/analsci.20.297

[16]. Derar, A. R.; Hussien, E. M. IEEE Sensors J. 2019, 19, 1626-1632.
https://doi.org/10.1109/JSEN.2018.2883656

[17]. Hussien, E. M.; Derar, A. R. SN Appl. Sci. 2019, 1, 338, 1-11.
https://doi.org/10.1007/s42452-019-0349-z

[18]. Tymecki, L.; Glab, S.; Koncki, R. Sensors 2006, 6, 390-396.
https://doi.org/10.3390/s6040390

[19]. Trojanowicz, M. Trac-Trends Anal. Chem. 2016, 84, 22-47.
https://doi.org/10.1016/j.trac.2016.03.027

[20]. Buck, R. P.; Linder, E. Pure Appl. Chem. 1994, 66, 2527-2536.
https://doi.org/10.1351/pac199466122527

[21]. Bakker, E.; Pretsch, E.; Bühlmann, P. Anal. Chem. 2000, 72, 1127-1133.
https://doi.org/10.1021/ac991146n

[22]. ICH Guidelines, In Validation of analytical procedures: text and methodology Q2 (R1), International conference on harmonization, Geneva, Switzerland, 2005; pp 11-12.

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).