

Simultaneous removal of chromotrope 2B and radionuclides from mixed radioactive process wastewater using organo-bentonite
Kamal Shakir (1,*)






(1) Nuclear Chemistry Department, Hot Laboratories Center, Atomic Energy Authority, Cairo, Nasr City, EG-13759, Egypt
(2) Nuclear Chemistry Department, Hot Laboratories Center, Atomic Energy Authority, Cairo, Nasr City, EG-13759, Egypt
(3) Organo-metallic and Organo-metalloid Chemistry Department, National Research Center, Cairo, Dokki, EG-12622, Egypt
(4) Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Abbassia, EG-11655, Egypt
(5) Nuclear Chemistry Department, Hot Laboratories Center, Atomic Energy Authority, Cairo, Nasr City, EG-13759, Egypt
(6) Nuclear Chemistry Department, Hot Laboratories Center, Atomic Energy Authority, Cairo, Nasr City, EG-13759, Egypt
(*) Corresponding Author
Received: 30 Jun 2010 | Revised: 06 Sep 2010 | Accepted: 29 Sep 2010 | Published: 28 Mar 2011 | Issue Date: March 2011
Abstract
The simultaneous removal of cationic radionuclides, 137Cs(I), 60Co(II) and 152+154Eu(III), and a chemically toxic anionic pollutant, the analytical reagent chromotrope 2B (C2B), from simulated mixed radioactive process wastewater (MRPWW) has been investigated using bentonite modified with cetyltrimethylammonium bromide. Modification was confirmed by elemental analysis, X-ray diffraction and infrared spectroscopy. Bentonite partially modified to 78% of the cation exchange capacity (PMB) was found capable to adsorb adequately both C2B and the radionuclides from aqueous solutions. Detailed batch kinetics and isotherm studies for removal of C2B singly and the radionuclides simultaneously were performed. The C2B and radionuclides kinetics conform to pseudo-first-order rate equation and the adsorption isotherms are treated with Freundlich and Langmuir models. Thermodynamic parameters were evaluated. Results suggest physisorption and ion-exchange as the principal uptake mechanism for C2B and the radionuclides, respectively. High simultaneous removal was obtained for C2B (≈ 100%) and each of the test radionuclides (>99%) from the simulated MRPWW.
Announcements
Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.
1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization between July 1, 2022 and August 15, 2022 (Voucher code: SINGLE2022).
2. Young writers will not be charged for the article processing fee between July 1, 2022 and August 15, 2022 (Voucher code: YOUNG2022).
3. The article processing fee will not be charged from the articles containing a part of the PhD thesis between July 1, 2022 and August 15, 2022 (Voucher code: PhD2022).
Editor-in-Chief
European Journal of Chemistry
Keywords
Full Text:
PDF

DOI: 10.5155/eurjchem.2.1.83-93.191
Links for Article
| | | | | | |
| | | | | | |
| | | |
Related Articles
Article Metrics


Citations
[1]. Fatih DEMIR, Omer LACIN, Burak BASTABAN
RADYOAKTIF PERTEKNETAT OKSO ANYONU ADSORPSIYONUNUN TERMODINAMIK ANALIZI
Konya Journal of Engineering Sciences 8(1), 71, 2020
DOI: 10.36306/konjes.698349

[2]. A. Milutinović-Nikolić, D. Maksin, N. Jović-Jovičić, M. Mirković, D. Stanković, Z. Mojović, P. Banković
Removal of 99Tc(VII) by organo-modified bentonite
Applied Clay Science 95, 294, 2014
DOI: 10.1016/j.clay.2014.04.027

[3]. Amir Ezzat, Mamdoh R. Mahmoud, Mohamed A. Soliman, Ebtissam A. Saad, Abdelhakim Kandil
Evaluation of sorptive flotation technique for enhanced removal of radioactive Eu(III) from aqueous solutions
Radiochimica Acta 105(3), 205, 2017
DOI: 10.1515/ract-2016-2618

[4]. D. Buzetzky, E. M. Kovács, M. N. Nagy, J. Kónya
Sorption of pertechnetate anion by cation modified bentonites
Journal of Radioanalytical and Nuclear Chemistry 322(3), 1771, 2019
DOI: 10.1007/s10967-019-06852-8

[5]. Ibrahim A. Salem, Mohamed H. Shaltout, Ahmed B. Zaki
Homogeneous and heterogeneous catalytic oxidation of some azo dyes using copper(II) ions
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 227, 117618, 2020
DOI: 10.1016/j.saa.2019.117618

[6]. John Texter
A Kinetic Model for Exfoliation Kinetics of Layered Materials
Angewandte Chemie 127(35), 10396, 2015
DOI: 10.1002/ange.201504693

[7]. N. A. Abdel Reheim, M. Abdel Geleel, Ashraf. A. Mohammed, E. R. Atta, Emtithal A. Elsawy, Amaal Tawfik
Investigation of novel composites to be used as backfill materials in radioactive waste disposal facilities
Journal of Radioanalytical and Nuclear Chemistry 322(2), 455, 2019
DOI: 10.1007/s10967-019-06809-x

[8]. Mamdoh R. Mahmoud, Mohamed A. Soliman, Karam F. Allan
Removal of Thoron and Arsenazo III from radioactive liquid waste by sorption onto cetyltrimethylammonium-functionalized polyacrylonitrile
Journal of Radioanalytical and Nuclear Chemistry 300(3), 1195, 2014
DOI: 10.1007/s10967-014-3088-z

[9]. Mamdoh R. Mahmoud, Ayman F. Seliman
Evaluation of silica/ferrocyanide composite as a dual-function material for simultaneous removal of 137Cs+ and 99TcO4− from aqueous solutions
Applied Radiation and Isotopes 91, 141, 2014
DOI: 10.1016/j.apradiso.2014.05.021

[10]. John Texter
A Kinetic Model for Exfoliation Kinetics of Layered Materials
Angewandte Chemie International Edition 54(35), 10258, 2015
DOI: 10.1002/anie.201504693

[11]. Moustafa A. Hamoud, Karam F. Allan, Refaat R. Ayoub, Mohamed Holeil, Mamdoh R. Mahmoud
Efficient removal of radiocobalt and manganese from their binary aqueous solutions by batch adsorption process using PAN/HDTMA/KCuHCF composite
Radiochimica Acta 109(1), 27, 2021
DOI: 10.1515/ract-2020-0078

References
[1]. Shakir, K.; Aziz, M.; Salama, H. N.; Benyamin, K. Radiochimica Acta 1987, 41, 47-53.
[2]. Shakir, K.; Elkafrawy, A. F.; Ghoneimy, H. F.; Beheir, Sh. G.; Refaat, M. Water Res. 2010, 44, 1449-1461.
doi:10.1016/j.watres.2009.10.029
PMid:19942250
[3]. Shakir, K.; Aziz, M. Radiochemica Acta 1979, 26, 113-116.
[4]. Omar, H. A.; Aziz, M.; Shakir, K. Radiochim. Acta 2006, 94, 1–8.
doi:10.1524/ract.2006.94.1.1
[5]. Shakir, K.; Ghoneimy, H. F.; Beheir, Sh. G.; Refaat, M. Sep. Sci. Technol. 2007, 42, 1341–1365.
doi:10.1080/01496390601174257
[6]. Shakir, K.; Sohsah, M.; Soliman, M. Sep. Purif. Technol. 2007, 54, 373-381.
doi:10.1016/j.seppur.2006.10.006
[7]. Snell, F. D. Photometric and fluorometric methods of analysis, Part 2; John Wiley and Sons, New York, 1978.
[8]. Vaghela, S. S.; Jethva, A. D.; Mehta, B. B.; Dave, S. P.; Adimurthy, S.; Ramachandraiah, G. Environ. Sci. Technol. 2005, 39, 2848–2855.
doi:10.1021/es035370c
[9]. Sangal, S. P. Microchem. J. 1964, 8, 313-316.
doi:10.1016/0026-265X(64)90118-3
[10]. Sangal, S. P. Bull. Chem. Soc. Japan 1965, 38, 141-142.
doi:10.1246/bcsj.38.141
[11]. Abdel-Ghani, N. T.; Shoukry, A. F.; Issa, Y. M.; Wahdan, O. A. J. Pharm. and Biomed. Anal. 2002, 28, 373-378.
doi:10.1016/S0731-7085(01)00607-0
[12]. Qamar, M.; Saquib, M.; Muneer, M. Dyes Pigm. 2005, 65, 1-9.
doi:10.1016/j.dyepig.2004.06.006
[13]. Sax, N. I. (Ed.) Cancer causing chemicals; VNR, New York, 1981.
[14]. Song, S.; Ying, H.; He, Z.; Chen, J. Chemosphere 2007, 66, 1782–1788.
doi:10.1016/j.chemosphere.2006.07.090
PMid:16973203
[15]. Wei, J.; Zhu, R.; Zhu, J.; Ge, F.; Yuan, P.; He, H.; Ming, C. J. Hazard. Mater. 2009, 166, 195-199.
doi:10.1016/j.jhazmat.2008.11.004
PMid:19095351
[16]. Kubilay, S.; Gürkan, R.; Savran, A.; Sahan, T. Adsorption 2007, 13, 41-51.
doi:10.1007/s10450-007-9003-y
[17]. Sabodina, M. N.; Kalmykov, S. N.; Sapozhnikov, Y. A.; Zakharova, E. V. J. Radioanal. Nucl. Chem. 2006, 270, 349-355.
doi:10.1007/s10967-006-0356-6
[18]. Stumm, W.; Morgan, J. J. Aquatic Chemistry, an International Emphasizing Chemical Equilibria in Natural Waters, John Wiley & Sons, New York, 1981.
[19]. Hendricks, S. B.; Jefferson, M. E. Am. Mineral. 1938, 23, 863–875.
[20]. Xu, S. H.; Boyd, S. A. Environ. Sci. Technol. 1995, 29, 313–320.
[21]. Kwolek, T.; Hodorowicz, M.; Stadnicka, K.; Czapkiewicz, J. J. Coll. Inter. Sci. 2003, 264, 14–19.
doi:10.1016/S0021-9797(03)00414-4
[22]. Abate, G.; Santos, L. B. O.; Colombo, S. M.; Masini, J. C. Appl. Clay Sci. 2006, 32, 261–270.
doi:10.1016/j.clay.2006.02.004
[23]. Anirudhan, T. S.; Ramachandran, M. J. Coll. Inter. Sci. 2006, 299, 116–124.
doi:10.1016/j.jcis.2006.01.056
PMid:16563409
[24]. Dultz, S.; Bors, J. Appl. Clay Sci. 2000, 16, 15–29.
doi:10.1016/S0169-1317(99)00042-3
[25]. Shakir, K.; Ghoneimy, H. F.; Elkafrawy, A. F.; Beheir, Sh. G.; Refaat, M. J. Hazard. Mater. B 2008, 150, 765-773.
doi:10.1016/j.jhazmat.2007.05.037
PMid:17587494
[26]. Wang, M. K.; Wang, S. L.; Wang, W. M. Soil Sci. Soc. Am. J. 1996, 60, 138-141.
doi:10.2136/sssaj1996.03615995006000010022x
[27]. Rosen, M. J.; Goldsmith, H. A. Systematic analysis of surface-active agents, 2nd Ed., John Wiley & Sons, Inc., New York, 1972.
[28]. Bors, J.; Dultz, St.; Riebe, B. Eng. Geology 1999, 54, 195–206.
doi:10.1016/S0013-7952(99)00074-5
[29]. Jaynes, W. F.; Boyd, S. A. Soil Sci. Soc. Am. J. 1991, 55, 43-48.
doi:10.2136/sssaj1991.03615995005500010007x
[30]. Madejová, J. Vib. Spectrosc. 2003, 31, 1-10.
doi:10.1016/S0924-2031(02)00065-6
[31]. Bors, J.; Dultz, St.; Riebe, B. App. Clay Sci. 2000, 16, 1-13.
doi:10.1016/S0169-1317(99)00041-1
[32]. Bors, J.; Dultz, St.; Gorny, A. Radiochim. Acta 1998, 82, 269–274.
[33]. Khalifa, H.; Khater, M. A.; El-Sirafy, A. A. Fres. J. Anal. Chem. 1968, 237, 111-117.
doi:10.1007/BF00500175
[34]. Stumm, W. Chemistry of the solid-water interface; John Wiley & Sons, New York, 1992.
[35]. Parks, G. A. Chem. Rev. 1965, 65, 177-198.
doi:10.1021/cr60234a002
[36]. Zohra, B.; Aicha, K.; Fatima, S.; Nourredine, B.; Zoubir, D. Chem. Eng. J. 2008, 136, 295-305.
doi:10.1016/j.cej.2007.03.086
[37]. Chiou, M. S.; Li, H. Y. Chemosphere 2003, 50, 1095-1105.
doi:10.1016/S0045-6535(02)00636-7
[38]. Wang, J.; Somasundran, P.; Nagaraj, D. R. Miner. Eng. 2005, 18, 77-81.
doi:10.1016/j.mineng.2004.05.013
[39]. Essington, M. E. Soil and water chemistry: An introductive approach, CRC Press, New York, 2004.
[40]. Petrucci, R. H.; Harwood, W. S. General Chemistry: Principles and Modern Applications, 7th ed., Prentice Hall, New Jersey, 1997.
[41]. Khan, S. A.; Reman, R.; Khan, M. A. J. Radioanal. Nucl. Chem. 1995, 190, 81-96.
doi:10.1007/BF02035639
[42]. Lagergren, S. Handlingar 1898, 24, 1-39.
[43]. Ho, Y. S.; McKay, G. Process Biochem. 1999, 34, 451-465.
doi:10.1016/S0032-9592(98)00112-5
[44]. Weber, W. J.; Morriss, J. C. J. Sanitary Eng. Div. Am. Soc. Civ. Eng. 1963, 89, 31-51.
[45]. Crini, G.; Peindy, H. N.; Gimbert, F.; Robert, C. Sep. Purif. Technol. 2007, 53, 97-110.
doi:10.1016/j.seppur.2006.06.018
[46]. Zhu, L. Z.; Ren, X.; Yu, H. Environ. Sci. Technol. 1998, 32, 3374-3378.
doi:10.1021/es980353m
How to cite
The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item
DOI Link: https://doi.org/10.5155/eurjchem.2.1.83-93.191


















European Journal of Chemistry 2011, 2(1), 83-93 | doi: https://doi.org/10.5155/eurjchem.2.1.83-93.191 | Get rights and content
Refbacks
- There are currently no refbacks.
Copyright (c)
© Copyright 2010 - 2022 • Atlanta Publishing House LLC • All Right Reserved.
The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.
Copyright 2010-2022 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.