European Journal of Chemistry 2011, 2(1), 83-93. doi:10.5155/eurjchem.2.1.83-93.191

Simultaneous removal of chromotrope 2B and radionuclides from mixed radioactive process wastewater using organo-bentonite


Kamal Shakir (1,*) , Hussein Fouad Ghoneimy (2) , Ibtisam Tadros Hennawy (3) , Ahmed Faouzy Elkafrawy (4) , Shokry Gad Elrab Beheir (5) , Mamdoh Refaat (6)

(1) Nuclear Chemistry Department, Hot Laboratories Center, Atomic Energy Authority, Cairo, Nasr City, EG-13759, Egypt
(2) Nuclear Chemistry Department, Hot Laboratories Center, Atomic Energy Authority, Cairo, Nasr City, EG-13759, Egypt
(3) Organo-metallic and Organo-metalloid Chemistry Department, National Research Center, Cairo, Dokki, EG-12622, Egypt
(4) Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Abbassia, EG-11655, Egypt
(5) Nuclear Chemistry Department, Hot Laboratories Center, Atomic Energy Authority, Cairo, Nasr City, EG-13759, Egypt
(6) Nuclear Chemistry Department, Hot Laboratories Center, Atomic Energy Authority, Cairo, Nasr City, EG-13759, Egypt
(*) Corresponding Author

Received: 30 Jun 2010, Accepted: 29 Sep 2010, Published: 28 Mar 2011

Abstract


The simultaneous removal of cationic radionuclides, 137Cs(I), 60Co(II) and 152+154Eu(III), and a chemically toxic anionic pollutant, the analytical reagent chromotrope 2B (C2B), from simulated mixed radioactive process wastewater (MRPWW) has been investigated using bentonite modified with cetyltrimethylammonium bromide. Modification was confirmed by elemental analysis, X-ray diffraction and infrared spectroscopy. Bentonite partially modified to 78% of the cation exchange capacity (PMB) was found capable to adsorb adequately both C2B and the radionuclides from aqueous solutions. Detailed batch kinetics and isotherm studies for removal of C2B singly and the radionuclides simultaneously were performed. The C2B and radionuclides kinetics conform to pseudo-first-order rate equation and the adsorption isotherms are treated with Freundlich and Langmuir models. Thermodynamic parameters were evaluated. Results suggest physisorption and ion-exchange as the principal uptake mechanism for C2B and the radionuclides, respectively. High simultaneous removal was obtained for C2B (≈ 100%) and each of the test radionuclides (>99%) from the simulated MRPWW.

2_1_83_93_800


Keywords


CTAB-bentonite; Chromotrope 2B; Radionuclides; Adsorption; Radioactive wastewater; Wastewater treatment

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.2.1.83-93.191

Article Metrics


This Abstract was viewed 1048 times | PDF Article downloaded 191 times

Citations

/


[1]. A. Milutinović-Nikolić, D. Maksin, N. Jović-Jovičić, M. Mirković, D. Stanković, Z. Mojović, P. Banković
Removal of 99Tc(VII) by organo-modified bentonite
Applied Clay Science  95, 294, 2014
DOI: 10.1016/j.clay.2014.04.027
/


[2]. John Texter
A Kinetic Model for Exfoliation Kinetics of Layered Materials
Angewandte Chemie  127(35), 10396, 2015
DOI: 10.1002/ange.201504693
/


[3]. Mamdoh R. Mahmoud, Mohamed A. Soliman, Karam F. Allan
Removal of Thoron and Arsenazo III from radioactive liquid waste by sorption onto cetyltrimethylammonium-functionalized polyacrylonitrile
Journal of Radioanalytical and Nuclear Chemistry  300(3), 1195, 2014
DOI: 10.1007/s10967-014-3088-z
/


[4]. Mamdoh R. Mahmoud, Ayman F. Seliman
Evaluation of silica/ferrocyanide composite as a dual-function material for simultaneous removal of 137Cs+ and 99TcO4− from aqueous solutions
Applied Radiation and Isotopes  91, 141, 2014
DOI: 10.1016/j.apradiso.2014.05.021
/


[5]. John Texter
A Kinetic Model for Exfoliation Kinetics of Layered Materials
Angewandte Chemie International Edition  54(35), 10258, 2015
DOI: 10.1002/anie.201504693
/


References

[1]. Shakir, K.; Aziz, M.; Salama, H. N.; Benyamin, K. Radiochimica Acta 1987, 41, 47-53.

[2]. Shakir, K.; Elkafrawy, A. F.; Ghoneimy, H. F.; Beheir, Sh. G.; Refaat, M. Water Res. 2010, 44, 1449-1461.
doi:10.1016/j.watres.2009.10.029
PMid:19942250

[3]. Shakir, K.; Aziz, M. Radiochemica Acta 1979, 26, 113-116.

[4]. Omar, H. A.; Aziz, M.; Shakir, K. Radiochim. Acta 2006, 94, 1–8.
doi:10.1524/ract.2006.94.1.1

[5]. Shakir, K.; Ghoneimy, H. F.; Beheir, Sh. G.; Refaat, M. Sep. Sci. Technol. 2007, 42, 1341–1365.
doi:10.1080/01496390601174257

[6]. Shakir, K.; Sohsah, M.; Soliman, M. Sep. Purif. Technol. 2007, 54, 373-381.
doi:10.1016/j.seppur.2006.10.006

[7]. Snell, F. D. Photometric and fluorometric methods of analysis, Part 2; John Wiley and Sons, New York, 1978.

[8]. Vaghela, S. S.; Jethva, A. D.; Mehta, B. B.; Dave, S. P.; Adimurthy, S.; Ramachandraiah, G. Environ. Sci. Technol. 2005, 39, 2848–2855.
doi:10.1021/es035370c

[9]. Sangal, S. P. Microchem. J. 1964, 8, 313-316.
doi:10.1016/0026-265X(64)90118-3

[10]. Sangal, S. P. Bull. Chem. Soc. Japan 1965, 38, 141-142.
doi:10.1246/bcsj.38.141

[11]. Abdel-Ghani, N. T.; Shoukry, A. F.; Issa, Y. M.; Wahdan, O. A. J. Pharm. and Biomed. Anal. 2002, 28, 373-378.
doi:10.1016/S0731-7085(01)00607-0

[12]. Qamar, M.; Saquib, M.; Muneer, M. Dyes Pigm. 2005, 65, 1-9.
doi:10.1016/j.dyepig.2004.06.006

[13]. Sax, N. I. (Ed.) Cancer causing chemicals; VNR, New York, 1981.

[14]. Song, S.; Ying, H.; He, Z.; Chen, J. Chemosphere 2007, 66, 1782–1788.
doi:10.1016/j.chemosphere.2006.07.090
PMid:16973203

[15]. Wei, J.; Zhu, R.; Zhu, J.; Ge, F.; Yuan, P.; He, H.; Ming, C. J. Hazard. Mater. 2009, 166, 195-199.
doi:10.1016/j.jhazmat.2008.11.004
PMid:19095351

[16]. Kubilay, S.; Gürkan, R.; Savran, A.; Sahan, T. Adsorption 2007, 13, 41-51.
doi:10.1007/s10450-007-9003-y

[17]. Sabodina, M. N.; Kalmykov, S. N.; Sapozhnikov, Y. A.; Zakharova, E. V. J. Radioanal. Nucl. Chem. 2006, 270, 349-355.
doi:10.1007/s10967-006-0356-6

[18]. Stumm, W.; Morgan, J. J. Aquatic Chemistry, an International Emphasizing Chemical Equilibria in Natural Waters, John Wiley & Sons, New York, 1981.

[19]. Hendricks, S. B.; Jefferson, M. E. Am. Mineral. 1938, 23, 863–875.

[20]. Xu, S. H.; Boyd, S. A. Environ. Sci. Technol. 1995, 29, 313–320.

[21]. Kwolek, T.; Hodorowicz, M.; Stadnicka, K.; Czapkiewicz, J. J. Coll. Inter. Sci. 2003, 264, 14–19.
doi:10.1016/S0021-9797(03)00414-4

[22]. Abate, G.; Santos, L. B. O.; Colombo, S. M.; Masini, J. C. Appl. Clay Sci. 2006, 32, 261–270.
doi:10.1016/j.clay.2006.02.004

[23]. Anirudhan, T. S.; Ramachandran, M. J. Coll. Inter. Sci. 2006, 299, 116–124.
doi:10.1016/j.jcis.2006.01.056
PMid:16563409

[24]. Dultz, S.; Bors, J. Appl. Clay Sci. 2000, 16, 15–29.
doi:10.1016/S0169-1317(99)00042-3

[25]. Shakir, K.; Ghoneimy, H. F.; Elkafrawy, A. F.; Beheir, Sh. G.; Refaat, M. J. Hazard. Mater. B 2008, 150, 765-773.
doi:10.1016/j.jhazmat.2007.05.037
PMid:17587494

[26]. Wang, M. K.; Wang, S. L.; Wang, W. M. Soil Sci. Soc. Am. J. 1996, 60, 138-141.
doi:10.2136/sssaj1996.03615995006000010022x

[27]. Rosen, M. J.; Goldsmith, H. A. Systematic analysis of surface-active agents, 2nd Ed., John Wiley & Sons, Inc., New York, 1972.

[28]. Bors, J.; Dultz, St.; Riebe, B. Eng. Geology 1999, 54, 195–206.
doi:10.1016/S0013-7952(99)00074-5

[29]. Jaynes, W. F.; Boyd, S. A. Soil Sci. Soc. Am. J. 1991, 55, 43-48.
doi:10.2136/sssaj1991.03615995005500010007x

[30]. Madejová, J. Vib. Spectrosc. 2003, 31, 1-10.
doi:10.1016/S0924-2031(02)00065-6

[31]. Bors, J.; Dultz, St.; Riebe, B. App. Clay Sci. 2000, 16, 1-13.
doi:10.1016/S0169-1317(99)00041-1

[32]. Bors, J.; Dultz, St.; Gorny, A. Radiochim. Acta 1998, 82, 269–274.

[33]. Khalifa, H.; Khater, M. A.; El-Sirafy, A. A. Fres. J. Anal. Chem. 1968, 237, 111-117.
doi:10.1007/BF00500175

[34]. Stumm, W. Chemistry of the solid-water interface; John Wiley & Sons, New York, 1992.

[35]. Parks, G. A. Chem. Rev. 1965, 65, 177-198.
doi:10.1021/cr60234a002

[36]. Zohra, B.; Aicha, K.; Fatima, S.; Nourredine, B.; Zoubir, D. Chem. Eng. J. 2008, 136, 295-305.
doi:10.1016/j.cej.2007.03.086

[37]. Chiou, M. S.; Li, H. Y. Chemosphere 2003, 50, 1095-1105.
doi:10.1016/S0045-6535(02)00636-7

[38]. Wang, J.; Somasundran, P.; Nagaraj, D. R. Miner. Eng. 2005, 18, 77-81.
doi:10.1016/j.mineng.2004.05.013

[39]. Essington, M. E. Soil and water chemistry: An introductive approach, CRC Press, New York, 2004.

[40]. Petrucci, R. H.; Harwood, W. S. General Chemistry: Principles and Modern Applications, 7th ed., Prentice Hall, New Jersey, 1997.

[41]. Khan, S. A.; Reman, R.; Khan, M. A. J. Radioanal. Nucl. Chem. 1995, 190, 81-96.
doi:10.1007/BF02035639

[42]. Lagergren, S. Handlingar 1898, 24, 1-39.

[43]. Ho, Y. S.; McKay, G. Process Biochem. 1999, 34, 451-465.
doi:10.1016/S0032-9592(98)00112-5

[44]. Weber, W. J.; Morriss, J. C. J. Sanitary Eng. Div. Am. Soc. Civ. Eng. 1963, 89, 31-51.

[45]. Crini, G.; Peindy, H. N.; Gimbert, F.; Robert, C. Sep. Purif. Technol. 2007, 53, 97-110.
doi:10.1016/j.seppur.2006.06.018

[46]. Zhu, L. Z.; Ren, X.; Yu, H. Environ. Sci. Technol. 1998, 32, 3374-3378.
doi:10.1021/es980353m


How to cite


Shakir, K.; Ghoneimy, H.; Hennawy, I.; Elkafrawy, A.; Beheir, S.; Refaat, M. Eur. J. Chem. 2011, 2(1), 83-93. doi:10.5155/eurjchem.2.1.83-93.191
Shakir, K.; Ghoneimy, H.; Hennawy, I.; Elkafrawy, A.; Beheir, S.; Refaat, M. Simultaneous removal of chromotrope 2B and radionuclides from mixed radioactive process wastewater using organo-bentonite. Eur. J. Chem. 2011, 2(1), 83-93. doi:10.5155/eurjchem.2.1.83-93.191
Shakir, K., Ghoneimy, H., Hennawy, I., Elkafrawy, A., Beheir, S., & Refaat, M. (2011). Simultaneous removal of chromotrope 2B and radionuclides from mixed radioactive process wastewater using organo-bentonite. European Journal of Chemistry, 2(1), 83-93. doi:10.5155/eurjchem.2.1.83-93.191
Shakir, Kamal, Hussein Fouad Ghoneimy, Ibtisam Tadros Hennawy, Ahmed Faouzy Elkafrawy, Shokry Gad Elrab Beheir, & Mamdoh Refaat. "Simultaneous removal of chromotrope 2B and radionuclides from mixed radioactive process wastewater using organo-bentonite." European Journal of Chemistry [Online], 2.1 (2011): 83-93. Web. 17 Sep. 2019
Shakir, Kamal, Ghoneimy, Hussein, Hennawy, Ibtisam, Elkafrawy, Ahmed, Beheir, Shokry, AND Refaat, Mamdoh. "Simultaneous removal of chromotrope 2B and radionuclides from mixed radioactive process wastewater using organo-bentonite" European Journal of Chemistry [Online], Volume 2 Number 1 (28 March 2011)

DOI Link: https://doi.org/10.5155/eurjchem.2.1.83-93.191

Refbacks

  • There are currently no refbacks.




Copyright (c)




© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.