European Journal of Chemistry

Hydrogen bonding framework in imidazole derivatives: Crystal structure and Hirshfeld surface analysis

Crossmark


Main Article Content

Praveen Singh
Ranjeet Kumar
Ashish Kumar Tewari

Abstract

A series of imidazole derivatives (1-3) were synthesized with three component reaction among benzil, ammonium acetate and formaldehyde/aromatic aldehyde at 110 °C without a catalyst and solvent. These synthesized imidazole derivatives have shown intermolecular hydrogen bonding such as N-H···N and O-H···N. The imidazole 1 and 2 exhibited N-H···N intermolecular hydrogen bonding while imidazole 3 exhibited O-H···N intermolecular hydrogen bonding. The hydrogen bonds in imidazoles were studied by X-ray crystallography and Hirshfeld Surface Analysis at dnorm surface which show the visible red spots, indicated for hydrogen bonds. Further, Hirshfeld surface analysis also shows the percentage of all intermolecular interactions.


icon graph This Abstract was viewed 2082 times | icon graph Article PDF downloaded 518 times icon graph Article CIF FILE downloaded 0 times icon graph Article CIF FILE downloaded 0 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Singh, P.; Kumar, R.; Tewari, A. K. Hydrogen Bonding Framework in Imidazole Derivatives: Crystal Structure and Hirshfeld Surface Analysis. Eur. J. Chem. 2020, 11, 50-59.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Breslin, H. J.; Cai, C.; Miskowski, T. A.; Coutlrho, S. V.; Zhang, S. P.; Pamela, H.; He, W. Bioorg. Med. Chem. Lett. 2006, 16, 2505-2508.
https://doi.org/10.1016/j.bmcl.2006.01.082

[2]. Yadav, M. R.; Puntambekar, D. S.; Sarathy, K. P.; Vengurlekar, S.; Giridhar, R. Ind. J. Chem. B 2005, 45, 475-482.

[3]. Matysiak, J.; Niewiadomy, A.; Niewiadomy, G. M.; Krajewska-kulak, E. Farmaco 2003, 58, 455-461.
https://doi.org/10.1016/S0014-827X(03)00046-6

[4]. Dahiya, R. Sci. Pharm. 2008, 71, 217-240.
https://doi.org/10.3797/scipharm.0803-04

[5]. Kapoor, V. K.; Dubey, S.; Mahindroo, N. Ind. J. Chem. B 2000, 39, 27-30.

[6]. Takakura, Y.; Kitajima, M.; Matsumoto, S.; Hashida, M.; Sezaki, H. Int. J. Pharm. 1987, 37, 135-143.
https://doi.org/10.1016/0378-5173(87)90018-4

[7]. Khabnadideh, S.; Rezaei, Z.; khalafi-Nezhad, A.; Bahrinajafi, R.; Mohamadi, R.; Farrokhroz, A. A. Bioorg. Med. Chem. Lett. 2003, 13, 2863-2865.
https://doi.org/10.1016/S0960-894X(03)00591-2

[8]. Cheng, J.; Xie, J.; Luo, X. Bioorg. Med. Chem. Lett. 2005, 15, 267-269.
https://doi.org/10.1016/j.bmcl.2004.10.087

[9]. Narayanan, S.; Vangapandu, S.; Jain, R. Bioorg. Med. Chem. Lett. 2001, 11, 1133-1136.
https://doi.org/10.1016/S0960-894X(01)00154-8

[10]. Nair, S. C.; Panikkar, B.; Akamanchi, K. G.; Panikkar, K. R. Cancer Lett. 1991, 60, 253-258.
https://doi.org/10.1016/0304-3835(91)90121-W

[11]. Nanidpour, L.; Shadnia, H.; Shafaroodi, H.; Amini, M.; Denpour, A. R.; Shafiee, A. Bioorg. Med. Chem. 2007, 15, 1976-1982.
https://doi.org/10.1016/j.bmc.2006.12.041

[12]. Thomas, H. M.; Jonathan, B. R.; Emily, F. C. Bioorg Med. Chem. Lett. 2004, 14, 3721-3725.

[13]. Lee, J. C.; Laydon, J. T.; Mcdonnell, P. C.; Gallagher, T. F.; Kumar, S.; Green, D.; McNulty, D.; Blumanthal, M.; Heys, J. R.; Landvatles, S. W.; Strickler, J. E.; McLaughlin, M. M.; Siemens, J. R.; Fischer, S. M.; Livi, J. P.; While, J. R.; Adam, J. L.; Young, P. R. Nature 1994, 372, 739-746.
https://doi.org/10.1038/372739a0

[14]. Maier, T.; Schmierer, R.; Bauer, K.; Bieringer, H.; Buerstell, H.; Sachre, B. US Patent 1989, 4820335.

[15]. Maier, T.; Schmierer, R.; Bauer, K.; Bieringer, H.; Buerstell, H.; Sachre, B. Chem. Abstr. 1989, 19494.

[16]. Schmierer, R.; Mildenberger, H.; Buerstell, H. German Patent 1987, 361464.

[17]. Schmierer, R.; Mildenberger, H.; Buerstell, H.; Chem. Abstr. 1988, 37838.

[18]. Cioli, V.; Putzolu, S.; Rossi, V.; Barcellona, P. S.; Corradino, C. Toxicol. Appl. Pharmacol. 1979, 50, 283-289.
https://doi.org/10.1016/0041-008X(79)90153-4

[19]. Satoru I. Japn Kokkai Tokyo Koho JP 01, 117, 867, 1989; Chem. Abstr. 1989, 111, 214482.

[20]. Tayebee, R.; Ghadamgahi, M. Am. J. Org. Chem. 2012, 2, 25-27.
https://doi.org/10.5923/j.ajis.20120201.05

[21]. Kool, E. T. Chem. Rev. 1997, 97, 1473-1488.
https://doi.org/10.1021/cr9603791

[22]. Bugg, Introduction to Enzyme and Coenzyme Chemistry Blackwell Publishing Ltd, Oxford, UK, 2004.
https://doi.org/10.1002/9781444305364

[23]. Keskin, O.; Gursoy, A.; Ma, B.; Nussinov, R. Chem. Rev. 2008, 108, 1225-1244.
https://doi.org/10.1021/cr040409x

[24]. Sarker, S. D.; Nahar, L. Chemistry for Pharmacy Students: General, Organic and Natural Product Chemistry, John Wiley & Sons Ltd, London, England, 2007.

[25]. Baures, P. W.; Rush, J. R.; Wiznycia, A. V.; Desper, J.; Helfrich, B. A.; Beatty, A. M. Cryst. Growth Des. 2002, 2, 653-664.
https://doi.org/10.1021/cg025549j

[26]. Ugono, O.; Rath, N. P.; Beatty, A. M. Cryst. Growth Des. 2009, 9, 4595-4598.
https://doi.org/10.1021/cg900908n

[27]. Aakeroy, C. B.; Desper, J.; Urbina, J. F. Chem. Comm. 2005, 2820-2822.
https://doi.org/10.1039/b503718b

[28]. Aakeroy, C. B.; Desper, J.; Hussain, I. Cryst. Growth Des. 2006, 6, 474-374.
https://doi.org/10.1021/cg050391z

[29]. Nguyen, T. L.; Fowler, F. W.; Lauher, J. W. J. Am. Chem. Soc. 2001, 123, 11057-11064.
https://doi.org/10.1021/ja016635v

[30]. Prins, L. J.; Reinhoudt, D. N.; Timmerman, P. Angew. Chem. Int. Ed. 2001, 40, 2382-2426.
https://doi.org/10.1002/1521-3773(20010702)40:13<2382::AID-ANIE2382>3.0.CO;2-G

[31]. Desiraju, G. R. Nature, 2001, 412, 397-400.
https://doi.org/10.1038/35086640

[32]. Allen, F. H.; Motherwell, W. D. S.; Raithby, P. R.; Shields, G. P.; Taylor, R. New. J. Chem. 1999, 23, 25-34.
https://doi.org/10.1039/a807212d

[33]. Sethuraman, V.; Stanley, N.; Muthiah, P. T.; Sheldrick, W. S.; Winter, M.; Luger, P.; Weber, M. Cryst. Growth. Des. 2003, 3, 823-8228.
https://doi.org/10.1021/cg030015j

[34]. Michal, A.; Jedrzej, M.; Kacper, W. R.; Andrzej, K. Cryst. Growth Des. 2015, 15, 1658-1665.
https://doi.org/10.1021/cg501561w

[35]. Damian, P.; Kamil, F. D.; Andrzej, K. Cryst. Growth Des. 2012, 12, 4302-4305.
https://doi.org/10.1021/cg300852t

[36]. Szafrannski, M.; Katrusiak, A.; McIntyre, G. J. Phys. Rev. Lett. 2002, 89, 5507-5510.
https://doi.org/10.1103/PhysRevLett.89.215507

[37]. Katrusiak, A.; Szafranski, M. J. Am. Chem. Soc. 2006, 128, 15775-15785.
https://doi.org/10.1021/ja0650192

[38]. Wenbo, L.; Ann, M. J. Magn. Reson. 2012, 222, 74-80.

[39]. Witold, Z.; Andrzej, K. Cryst. Growth Des. 2013, 13, 696-700.
https://doi.org/10.1021/cg301374z

[40]. Christopher, J. S.; Paul, D. B. Cryst. Growth Des. 2013, 13, 2866-2871.
https://doi.org/10.1021/cg400273p

[41]. Desiraju, G. R. Acc. Chem. Res. 2002, 35, 565-573.
https://doi.org/10.1021/ar010054t

[42]. Steiner, T.; Desiraju, G. R. Chem. Commun. 1998, 891-892.
https://doi.org/10.1039/a708099i

[43]. Sheldrick, G. M. ActaCrystallog. A 2008, A64, 112-122.

[44]. Farrugia, L. J. J. Appl. Crystallog. 1999, 32, 837-838.
https://doi.org/10.1107/S0021889899006020

[45]. Macrae, C. F.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Shields, G. P.; Taylor, R.; Towler, M.; Van de Streek, J. J. Appl. Cryst. 2006, 39, 453-457.
https://doi.org/10.1107/S002188980600731X

[46]. Spek, A. L. Acta Crystallog. A 1990, 46, C34.
https://doi.org/10.1111/j.1399-6576.1990.tb03209.x

[47]. McKinnon, J. J.; Spackman, M. A.; Mitchell, A. S. Acta Crystallogr. B 2004, 60, 627-668.
https://doi.org/10.1107/S0108768104020300

[48]. Ranjeet, K.; Pratima Y.; Shiv, P.; Krishnan R. K.; Balasubramanian, S.; Ashish K. T. Chem. Select 2017, 2, 3444-3451.

[49]. Tewari, A. K.; Srivastava, P.; Singh, V. P.; Singh, P.; Kumar, R.; Khanna, R. S.; Srivastava, P.; Gnanasekaran, R.; Hobza, P. New J. Chem. 2014, 38, 4885-4892.
https://doi.org/10.1039/C4NJ00679H

[50]. Tewari, A. K.; Srivastava, P.; Puerta, C.; Valerga, P. J. Mol. Struct. 2009, 921, 251-254.

[51]. Tewari, A. K.; Srivastava, P.; Singh, V. P.; Puerta, C.; Pedro, V. Arkivoc 2010, 9, 127-136.
https://doi.org/10.3998/ark.5550190.0011.104

[52]. Dubey, R.; Tewari, A. K.; Ravikumar, K.; Sridhar, B. J. Chem. Crystallogr. 2011, 41, 886-890.
https://doi.org/10.1007/s10870-011-0039-1

[53]. Luo, Y. H.; Chen-Guang, Z.; Bing, X.; Bai-W. S. Cryst. Eng. Comm. 2012, 14, 6860-6868.

[54]. Saeed, S.; Rashid, N.; Mohamed, S. Eur. J. Chem. 2017, 8(1), 15-17.
https://doi.org/10.5155/eurjchem.8.1.15-17.1521

[55]. Okamoto, A.; Muto, T.; Gaowa, S.; Takahara, G.; Yonezawa, N. Eur. J. Chem. 2017, 8(1), 33-41.
https://doi.org/10.5155/eurjchem.8.1.33-41.1529

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).