

FeF3 as a green catalyst for the synthesis of dihydropyrimidines via Biginelli reaction
Thalishetti Krishna (1)



(1) Technology Development Centre, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Limited, Hyderabad 500049, India
(2) Sreenidhi Institute of Science and Technology (Autonomous), Ghatkesar, Hyderabad 501301, Telangana, India
(3) Technology Development Centre, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Limited, Hyderabad 500049, India
(*) Corresponding Author
Received: 02 May 2020 | Revised: 01 Jun 2020 | Accepted: 06 Jun 2020 | Published: 30 Sep 2020 | Issue Date: September 2020
Abstract
A facile and highly efficient FeF3-catalyzed method has been developed for the direct synthesis of functionalized dihydropyrimidines from readily available starting materials via Biginelli reaction. These reactions proceed at low-catalyst loadings with high functional group tolerance under mild conditions. This method provides efficient reusability of the catalyst and good to excellent yields of the products, making the protocol more attractive, economical, and environmentally benign. FeF3 is an attractive catalyst for the Biginelli reaction because of its high acidity, thermal stability and water tolerance.
Announcements
Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.
1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization or a DFT study between September 15, 2023 and October 31, 2023 (Voucher code: FALL2023).
2. A 50% discount will be applied to the article processing fee for submissions made between September 15, 2023 and October 31, 2023 by authors who have at least one publication in the European Journal of Chemistry (Voucher code: AUTHOR-3-2023).
3. Young writers will not be charged for the article processing fee between September 15, 2023 and October 31, 2023 (Voucher code: YOUNG2023).
Editor-in-Chief
European Journal of Chemistry
Keywords
Full Text:
PDF

DOI: 10.5155/eurjchem.11.3.206-212.1992
Links for Article
| | | | | | |
| | | | | | |
| | | |
Related Articles
Article Metrics


Funding information
Dr. Reddy’s Laboratories Limited, Hyderabad 500049, India.
Citations
[1]. Y. S. Thakare
Green Synthesis of Dihydropyrimidinone Derivatives and Study of Physicochemical Properties and Antimicrobial Activity
International Journal of Advanced Research in Science, Communication and Technology , 237, 2021
DOI: 10.48175/IJARSCT-2383

References
[1]. Domling, A.; Wang, W.; Wang, K. Chem. Rev. 2012, 112, 3083-3135.
https://doi.org/10.1021/cr100233r
[2]. Rotstein, B. H.; Zaretsky, S.; Rai, V.; Yudin, A. K. Chem. Rev. 2014, 114, 8323-8359.
https://doi.org/10.1021/cr400615v
[3]. Zhu, J.; Bienayme, H. Multicomponent Reactions, Wiley-VCH, Weinheim, 2005.
https://doi.org/10.1002/3527605118
[4]. Brauch, S.; van Berkel, S. S.; Westermann, B. Chem. Soc. Rev. 2013, 42, 4948-4962.
https://doi.org/10.1039/c3cs35505e
[5]. Cioc, R. C.; Ruijter, E.; Orru, R. V. A. Green Chem. 2014, 16, 2958-2975.
https://doi.org/10.1039/C4GC00013G
[6]. Biginelli, P. Gazz. Chim. Ital. 1893, 23, 360-416.
[7]. Biginelli, P. Ber. Dtsch. Chem. Ges. 1893, 26, 447-450.
https://doi.org/10.1002/cber.18930260199
[8]. Folkers, K.; Johnson, T. B. J. Am. Chem. Soc. 1933, 55, 3784-3791.
https://doi.org/10.1021/ja01336a054
[9]. Sweet, F. S.; Fissekis, J. D. J. Am. Chem. Soc. 1973, 95, 8741-8749.
https://doi.org/10.1021/ja00807a040
[10]. Kappe, C. O. J. Org. Chem. 1997, 62, 7201. -7204
https://doi.org/10.1021/jo971010u
[11]. De Souza, R.; Penha, E. T.; Milagre, H. M. S.; Garden, S. J.; Esteves, P. M.; Eberlin, M. N.; Antunes, O. A. C. Chem. Eur. J. 2009, 15, 9799-9804.
https://doi.org/10.1002/chem.200900470
[12]. Raj, M. K.; Prakash Rao, H. S.; Manjunatha, S. G.; Sridharan, R.; Nambiar, S.; Keshwan, J.; Rappai, J.; Bhagat, S.; Shwetha, B. S.; Hegde, D.; Santhosh, U. Tetrahedron Lett. 2011, 52, 3605-3609.
https://doi.org/10.1016/j.tetlet.2011.05.011
[13]. Ramos, L. M.; Tobio, A. Y. P. L.; Santos, M. R.; Oliveira, H. C. B.; Gomes, A. F.; Gozzo, F. C.; Oliveira, A. L.; Neto, B. A. D. J. Org. Chem. 2012, 77, 10184-10193.
https://doi.org/10.1021/jo301806n
[14]. Puripat, M.; Ramozzi, R.; Hatanaka, M.; Parasuk, W.; Parasuk, V.; Morokuma, K. J. Org. Chem. 2015, 80, 6959-6967.
https://doi.org/10.1021/acs.joc.5b00407
[15]. Nagarajaiah, H.; Mukhopadhyay, A.; Moorthy, J. N. Tetrahedron Lett. 2016, 57, 5135-5296.
https://doi.org/10.1016/j.tetlet.2016.09.047
[16]. Kappe, C. O. QSAR Comb. Sci. 2003, 22, 630-645.
https://doi.org/10.1002/qsar.200320001
[17]. Kappe, C. O.; Stadler, A. Org. React. 2004, 63, 1-117.
https://doi.org/10.1002/0471264180.or063.01
[18]. Aron, Z. D.; Overman, L. E. Chem. Commun. 2004, 253-265.
https://doi.org/10.1039/b309910e
[19]. Gong, L. Z.; Chen, X. H.; Xu, X. Y. Chem. Eur. J. 2007, 13, 8920-8926.
https://doi.org/10.1002/chem.200700840
[20]. Suresh; Sandhu, J. S. Arkivoc 2012, 66-133.
https://doi.org/10.5005/jp/books/11565_17
[21]. Panda, S. S.; Khanna, P.; Khanna, L. Curr. Org. Chem. 2012, 16, 507-520.
https://doi.org/10.2174/138527212799499859
[22]. Kappe, C. O. Acc. Chem. Res. 2000, 33, 879-888.
https://doi.org/10.1021/ar000048h
[23]. Fatima, A.; Terra, B. S.; Neto, L. S.; Braga, T. C. In Green Synthetic Approaches for Biologically Relevant Heterocycles; Brahmachari, G. , Ed.; Elsevier Inc: Netherlands, 2015, pp. 317-337, Ch. 12.
https://doi.org/10.1016/B978-0-12-800070-0.00012-8
[24]. Fatima, A.; Braga, T. C.; Neto, L. S.; Terra, B. S.; Oliveira, B. G. F.; Silva, D. L.; Modolo, L. V. J. Adv. Res. 2015, 6, 363-373.
https://doi.org/10.1016/j.jare.2014.10.006
[25]. Rovnyak, G. C.; Kimball, S. D.; Beyer, B.; Cucinotta, G.; Dimarco, J. D.; Gougoutas, J.; Hedberg, A.; Malley, M.; McCarthy, J. P.; Zhang, R.; Moreland, S. J. Med. Chem. 1995, 38, 119-129.
https://doi.org/10.1021/jm00001a017
[26]. Bruce, M. A.; Pointdexter, G. S.; Johnson, G. PCT Int. Appl. WO 98 33, 791, 1998.
[27]. Atwal, K. S.; Swanson, B. N.; Unger, S. E.; Floyd, D. M.; Moreland, S.; Hedberg, A.; O'Reilly, B. C. J. Med. Chem. 1991, 34, 806-811.
https://doi.org/10.1021/jm00106a048
[28]. Dallinger, D.; Kappe, C. O. Nat. Protoc. 2007, 2, 317-321.
https://doi.org/10.1038/nprot.2006.436
[29]. Terracciano, S.; Lauro, G.; Strocchia, M.; Fischer, K.; Werz, O.; Riccio, R.; Bruno, I.; Bifulco, G. ACS Med. Chem. Lett. 2015, 6, 187-191.
https://doi.org/10.1021/ml500433j
[30]. Barrow, J. C.; Nantermet, P. G.; Selnick, H. G.; Glass, K. L.; Rittle, K. E.; Gilbert, K. F.; Steele, T. G.; Homnick, C. F.; Freidinger, R. M.; Ransom, R. W.; Kling, P.; Reiss, D.; Broten, T. P.; Schorn, T. W.; Chang, R. S. L.; OMalley, S. S.; Olah, T. V.; Ellis, J. D.; Barrish, A.; Kassahun, K.; Leppert, P.; Nagarathnam, D.; Forray, C. J. Med. Chem. 2000, 43, 2703-2718.
https://doi.org/10.1021/jm990612y
[31]. Crespo, A.; Maatougui, A. E.; Biagini, P.; Azuaje, J.; Coelho, A.; Loza, J. M. I.; Cadavid, M. I.; Garcia-Mera, X.; Gutierrez- de-Teran, H.; Sotelo, E. ACS Med. Chem. Lett. 2013, 4, 1031-1036.
https://doi.org/10.1021/ml400185v
[32]. Patil, S. R.; Choudhary, A. S.; Patil, V. S.; Sekar, N. Fibers Polym. 2015, 16, 2349-2358.
https://doi.org/10.1007/s12221-015-5233-x
[33]. Boukis, A. C.; Llevot, A.; Meier, M. A. R. Macromol. Rapid Commun. 2016, 37, 643-649.
https://doi.org/10.1002/marc.201500717
[34]. Zhao, Y.; Yu, Y.; Zhang, Y.; Wang, X.; Yang, B.; Zhang, Y.; Zhang, Q.; Fu, C.; Weia, Y.; Tao, L. Polym. Chem. 2015, 6, 4940-4945.
https://doi.org/10.1039/C5PY00684H
[35]. Lu, J.; Bai, Y.; Wang, Z.; Yang, B.; Ma, H. Tetrahedron Lett. 2000, 41, 9075-9078.
https://doi.org/10.1016/S0040-4039(00)01645-2
[36]. Fu, N. Y.; Yuan, Y. F.; Cao, Z.; Wang, S. W.; Wang, J. T.; Peppe, C. Tetrahedron 2002, 58, 4801-4807.
https://doi.org/10.1016/S0040-4020(02)00455-6
[37]. Lu, J.; Bai, Y. Synthesis 2002, 466-470.
https://doi.org/10.1055/s-2002-20956
[38]. Maiti, G.; Kundu, P.; Guin, C. Tetrahedron Lett. 2003, 44, 2757-2758.
https://doi.org/10.1016/S0040-4039(02)02859-9
[39]. Bose, D. S.; Fatima, L.; Mereyala, H. B. J. Org. Chem. 2003, 68, 587-590.
https://doi.org/10.1021/jo0205199
[40]. Gohain, M.; Prajapati, D.; Sandhu, J. S. Synlett. 2004, 235-238.
[41]. Narsaiah, A. V.; Basak, A. K.; Nagaiah, K. Synthesis 2004, 8, 1253-1256.
https://doi.org/10.1055/s-2004-822383
[42]. Jenner, G. Tetrahedron Lett. 2004, 45, 6195-6198.
https://doi.org/10.1016/j.tetlet.2004.05.106
[43]. Han, X.; Xu, F.; Luo, Y.; Shen, Q. Eur. J. Org. Chem. 2005, 1500-1504.
https://doi.org/10.1002/ejoc.200400753
[44]. El Badaoui, H.; Bazi, F.; Tahir, R.; Lazrek, H. B.; Sebti, S. CatalCommun. 2005, 6, 455-458.
https://doi.org/10.1016/j.catcom.2005.04.003
[45]. Kalita, H. R.; Phukan, P. CatalCommun. 2007, 8, 179-183.
https://doi.org/10.1016/j.catcom.2006.06.004
[46]. Atar, A. B.; Jeong, Y. T. Mol. Divers. 2014, 18, 389-401.
https://doi.org/10.1007/s11030-014-9506-x
[47]. Saini, A.; Kumar, S.; Sandhu, J. S. Indian J. Chem. B 2007, 46, 1690-1694.
[48]. Guo, W. S.; Wen, L. R.; Li, Y. F.; Yang, H. Z. J. Mol. Catal. A: Chem. 2006, 258, 133-138.
https://doi.org/10.1016/j.molcata.2006.05.028
[49]. Peng, X. C. Y. Catal. Lett. 2008, 122, 310-313.
https://doi.org/10.1016/j.msea.2006.11.180
[50]. Li, D.; Mao, H.; An, L.; Zhao, Z.; Zou, J. Chin J Chem. 2010, 28, 2025-2032.
https://doi.org/10.1002/cjoc.201090338
[51]. Kore, R.; Srivastava, R. J. Mol. Catal. A: Chem. 2011, 345, 117-126.
https://doi.org/10.1016/j.molcata.2011.06.003
[52]. Joseph, J. K.; Jain, S. L.; Singhal, S.; Sain, B. Ind. Eng. Chem. Res. 2011, 50, 11463-11466.
https://doi.org/10.1021/ie200522t
[53]. Alvim, H. G. O.; Lima, T. B.; de Oliveira, H. C. B.; de Gozzo, F. C.; Macedo, J. L.; de Abdelnur, P. V.; Silva, W. A.; Neto, B. A. D. ACS Catal. 2013, 3, 1420-1430.
https://doi.org/10.1021/cs400291t
[54]. Ramos, L. M.; Guido, B. C.; Nobrega, C. C.; Correa, J. R.; Silva, R. G.; Oliveira, Heibbe C. B. de; Gomes, A. F.; Gozzo, F. C.; Neto, B. A. D. Chem. Eur. J. 2013, 19, 4156-4168.
https://doi.org/10.1002/chem.201204314
[55]. Ladole, C. A.; Salunkhe, N. G.; Aswar, A. S. J. Indian Chem. Soc. 2016, 93, 337-341.
[56]. Yuan, H.; Zhang, K.; Xiam, J.; Hu, X.; Yuan, S. Cogent Chem. 2017, 3, 1318692-1318697.
https://doi.org/10.1080/23312009.2017.1318692
[57]. Chen, P.; Tu, M. Tetrahedron Lett. 2018, 59, 987-990.
https://doi.org/10.1016/j.tetlet.2018.01.070
[58]. Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2004, 104, 6217-6254.
https://doi.org/10.1021/cr040664h
[59]. Bauer, I.; Knölker, H. J. Chem. Rev. 2015, 115, 3170-3387.
https://doi.org/10.1021/cr500425u
[60]. Shang, R.; Ilies, L.; Nakamura, E. Chem. Rev. 2017, 117, 9086-9139.
https://doi.org/10.1021/acs.chemrev.6b00772
[61]. Surasani, R.; Kalita, D.; Dhanunjaya, R. A. V.; Yarbagi, K.; Chandrasekhar, K. B. J. Fluorine Chem. 2012, 135, 91-96.
https://doi.org/10.1016/j.jfluchem.2011.09.005
[62]. Narendar R. T.; Jayathirth, a R. V. Tetrahedron Lett. 2018, 59, 2859-2875.
https://doi.org/10.1016/j.tetlet.2018.06.023
[63]. Narendar R. T.; Beatriz, A.; Jayathirtha, R. V.; de Lima, D. P. Chem. Asian J. 2019, 14, 344-388.
https://doi.org/10.1002/asia.201801560
[64]. Fu, N. Y.; Yuan, Y. F.; Cao, Z.; Wang, S. W.; Wang, J. T.; Peppe, C. Tetrahedron 2002, 58, 4801-4807.
https://doi.org/10.1016/S0040-4020(02)00455-6
[65]. Lu, J.; Bai, Y.; Wang, Z.; Yang, B.; Ma, H. Tetrahedron Lett. 2000, 41, 9075-9078.
https://doi.org/10.1016/S0040-4039(00)01645-2
[66]. Maiti, G.; Kundu, P.; Guin, C. Tetrahedron Lett. 2003, 44, 2757-2758.
https://doi.org/10.1016/S0040-4039(02)02859-9
[67]. Adib, M.; Ghanbary, K.; Mostofi, M.; Ganjali, M. R. Molecules 2006, 11, 649-654.
https://doi.org/10.3390/11080649
[68]. Chen, X. H.; Xu, X. Y.; Liu, H.; Cun, L. F.; Gong, L. Z. J. Am. Chem. Soc. 2006, 128, 14802-14803.
https://doi.org/10.1021/ja065267y
[69]. Roy, S. R.; Jadhavar, P. S.; Seth, K.; Sharma, K. K.; Chakraborti, A. K. Synthesis 2011, 14, 2261-2267.
https://doi.org/10.1055/s-0030-1260067
[70]. Pasunooti, K. K.; Chai, H.; Jensen, C. N.; Gorityala, B. K.; Wang, S.; Liu, X. W. Tetrahedron Lett. 2011, 52, 80-84
https://doi.org/10.1016/j.tetlet.2010.10.150
How to cite
The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item
DOI Link: https://doi.org/10.5155/eurjchem.11.3.206-212.1992

















European Journal of Chemistry 2020, 11(3), 206-212 | doi: https://doi.org/10.5155/eurjchem.11.3.206-212.1992 | Get rights and content
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Authors

This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).
© Copyright 2010 - 2023 • Atlanta Publishing House LLC • All Right Reserved.
The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.
Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.