European Journal of Chemistry 2010, 1(1), 54-60 | doi: | Get rights and content

Issue cover


1,4-Diazabicyclo[2.2.2]octane (DABCO) as a useful catalyst in organic synthesis

Baghernejad Bita (1,*)

(1) Department of Chemistry, School of Sciences, Payame Noor University, Tehran, IR-19569, Iran
(*) Corresponding Author

Received: 23 Mar 2010 | Accepted: 24 Mar 2010 | Published: 31 Mar 2010 | Issue Date: March 2010


1,4-diazabicyclo[2.2.2]octane (DABCO) has been used in many organic preparations as a good solid catalyst. DABCO has received considerable attention as an inexpensive, eco-friendly, high reactive, easy to handle and non-toxic base catalyst for various organic transformations, affording the corresponding products in excellent yields with high selectivity. In this review, some applications of this catalyst in organic reactions were discussed.



Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.

1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization or a DFT study between September 15, 2023 and October 31, 2023 (Voucher code: FALL2023).

2. A 50% discount will be applied to the article processing fee for submissions made between September 15, 2023 and October 31, 2023 by authors who have at least one publication in the European Journal of Chemistry (Voucher code: AUTHOR-3-2023).

3. Young writers will not be charged for the article processing fee between September 15, 2023 and October 31, 2023 (Voucher code: YOUNG2023).

European Journal of Chemistry


DABCO; 1,4-diazabicyclo[2.2.2]octane; Organic reactions

Full Text:

PDF    Open Access

DOI: 10.5155/eurjchem.1.1.54-60.2

Links for Article

| | | | | | |

| | | | | | |

| | | |

Related Articles

Article Metrics

icon graph This Abstract was viewed 18827 times | icon graph PDF Article downloaded 3533 times



[1]. Haiyang Wang, Liye Huang, Xiaohui Cao, Dacheng Liang, Ai-Yun Peng
Synthesis of phostones via DABCO-catalyzed bromocyclization of alkenylphosphonic acid monoesters
Organic & Biomolecular Chemistry  15(35), 7396, 2017
DOI: 10.1039/C7OB01436H

[2]. Jing Li, Hong‐Ru Tan, Yu‐Long An, Zhi‐Yu Shao, Sheng‐Yin Zhao
Synthesis and DABCO‐induced demethylation of 3‐cyano‐4‐methoxy‐2‐pyridone derivatives
Journal of Heterocyclic Chemistry  57(1), 486, 2020
DOI: 10.1002/jhet.3783

[3]. Maryam Salari, Mohammad H. Mosslemin, Alireza Hassanabadi
Synthesis of a series of novel 2,3-dihydrofurano-γ-lactone derivatives using DABCO as catalyst in an aqueous medium
Journal of Chemical Research  41(8), 469, 2017
DOI: 10.3184/174751917X15005654784030

[4]. Anna Turguła, Katarzyna Materna, Daniela Gwiazdowska, Filip Walkiewicz, Katarzyna Marcinkowska, Juliusz Pernak
Difunctional ammonium ionic liquids with bicyclic cations
New Journal of Chemistry  43(11), 4477, 2019
DOI: 10.1039/C8NJ06054A

[5]. Fernanda R. Vieira, Ana Barros-Timmons, Dmitry V. Evtuguin, Paula C. R. Pinto
Effect of different catalysts on the oxyalkylation of eucalyptus Lignoboost® kraft lignin
Holzforschung  74(6), 567, 2020
DOI: 10.1515/hf-2019-0274

[6]. A. Ponnuvel, S. Nivithaa, A. Kala, G. R. Ramkumaar, K. S. Nagaraja, C. Karnan
Structural and Spectral Studies of Bis (1, 3, 5-triazinane-2, 4, 6-trione) 1, 4-diazabicyclo [2·2·2] Octane (TTDO).
Journal of Chemical Crystallography  53(4), 507, 2023
DOI: 10.1007/s10870-023-00989-x

[7]. Nitisha Chakraborty, Amrit Krishna Mitra
The versatility of DABCO as a reagent in organic synthesis: a review
Organic & Biomolecular Chemistry  21(34), 6830, 2023
DOI: 10.1039/D3OB00921A

[8]. Alireza Hasaninejad, Fatemeh Mandegani, Maryam Beyrati, Ammar Maryamabadi, Gholamhossein Mohebbi
Highly Efficient Synthesis of Spirooxindole, Spiroacenaphthylene and Bisbenzo[b]pyran Derivatives and Evaluation of Their Inhibitory Activity against Sirtuin 2
ChemistrySelect  2(23), 6784, 2017
DOI: 10.1002/slct.201701364

[9]. Anna Turguła, Małgorzata Graś, Agnieszka Gabryelczyk, Grzegorz Lota, Juliusz Pernak
Long‐Chain Ionic Liquids Based on Monoquaternary DABCO Cations and TFSI Anions: Towards Stable Electrolytes for Electrochemical Capacitors
ChemPlusChem  85(12), 2679, 2020
DOI: 10.1002/cplu.202000680

[10]. Adam J. Rosenberg, Daniel A. Clark
Total Synthesis of Pentosidine
Organic Letters  14(17), 4678, 2012
DOI: 10.1021/ol3021226

[11]. Reid E. Messersmith, Mairead E. Bartlett, Daniel J. Rose, Douglas A. Smith, Marcia W. Patchan, Jason J. Benkoski, Morgana M. Trexler, Christopher M. Hoffman
Rapid Underwater Adhesive Utilizing Crosslinker and Amine Catalyst-Filled Microcapsules
ACS Applied Polymer Materials  3(2), 996, 2021
DOI: 10.1021/acsapm.0c01277

[12]. Georgeta Mocanu, Marieta Nichifor, Magdalena C. Stanciu
New shell crosslinked micelles from dextran with hydrophobic end groups and their interaction with bioactive molecules
Carbohydrate Polymers  119, 228, 2015
DOI: 10.1016/j.carbpol.2014.11.047

[13]. Maryam Salari, Mohammad H. Mosslemin, Alireza Hassanabadi
DABCO as an Efficient Catalyst for the Diastereoselective Synthesis of trans-(4-chlorophenyl)-7-aryl-6,7-dihydro-[1,3]dioxolo[4,5-f]benzofuran-6-yl) Methanone in an Aqueous Medium
Journal of Chemical Research  41(1), 60, 2017
DOI: 10.3184/174751917X14839766277215

[14]. Nassim Borazjani, Saghi Sepehri, Maryam Behzadi, Aliasghar Jarrahpour, Javad Ameri Rad, Maryam Sasanipour, Milad Mohkam, Younes Ghasemi, Amin Reza Akbarizadeh, Carole Digiorgio, Jean Michel Brunel, Mohammad Mehdi Ghanbari, Gyula Batta, Edward Turos
Three-component synthesis of chromeno β-lactam hybrids for inflammation and cancer screening
European Journal of Medicinal Chemistry  179, 389, 2019
DOI: 10.1016/j.ejmech.2019.06.036

[15]. Rambabu Sirgamalla, Kurumanna Adem, Sakram Boda, Ashok Kommakula, Suryam Neradi, Shyam Perka, Kiran Bojja, Mohammed Arifuddin
DABCO mediated one pot synthesis of 2‐(3‐benzyl‐2, 6‐dioxo‐3, 6‐dihydropyrimidin‐1[2H]‐yl)‐N‐(4‐(1, 3‐dioxo‐1H‐benzo [de]isoquinolin‐2[3H]‐yl) aryl) acetamides as antimicrobial agents
Journal of Heterocyclic Chemistry  57(9), 3375, 2020
DOI: 10.1002/jhet.4055

[16]. Mohammad Ali Nasseri, Seyed Mohsen Sadeghzadeh
Diazabicyclo[2.2.2]octane stabilized on Fe3O4 as catalysts for synthesis of coumarin under solvent-free conditions
Journal of the Iranian Chemical Society  11(1), 27, 2014
DOI: 10.1007/s13738-013-0270-0

[17]. Ensieh Safari, Alireza Hasaninejad
One‐pot, Multi‐Component Synthesis of Novel Bis‐Spiro Pyranopyrazole Derivatives in the Presence of DABCO as an Efficient and Reusable Solid Base Catalyst
ChemistrySelect  3(12), 3529, 2018
DOI: 10.1002/slct.201800410

[18]. I. V. Ukrainets, L. A. Petrushova, S. V. Shishkina, G. Sim
2,1-Benzothiazine 2,2-Dioxides. 9*. Alkylation of Methyl 4-Hydroxy-1-Methyl-2,2-Dioxo-1Н-2λ6,1-Benzothiazine-3-Carboxylate with Ethyl Iodide
Chemistry of Heterocyclic Compounds  50(12), 1741, 2015
DOI: 10.1007/s10593-015-1646-0

[19]. Tapaswini Das, Seetaram Mohapatra, Asit Kumar Pradhan, Sabita Nayak
Recent Advances of Michael/hetero‐Michael Addition Reaction in the Synthesis of 3‐Nitro‐2H‐chromene Derivatives
ChemistrySelect  8(14), , 2023
DOI: 10.1002/slct.202300477

[20]. K. Saminathan, S. Athimoolam, N. Karthikeyan, K. Sivakumar
Experimental, quantum chemical studies and Hirshfeld surface analysis on molecular structure of two picrate salts: 1, 4-diaza bicyclo [2,22] octane and Furan-2yl methanamine
Journal of Molecular Structure  1171, 127, 2018
DOI: 10.1016/j.molstruc.2018.05.069

[21]. Mohammad Reza Salari, Mohammad H Mosslemin, Alireza Hassanabadi
Green synthesis of trans-(4-chlorophenyl)-7-aryl-6,7-dihydro[1,3]dioxolo[4,5-f][1]benzofuran-6-yl)methanones in an aqueous medium
Journal of Chemical Research  43(3-4), 86, 2019
DOI: 10.1177/1747519819836527

[22]. Bita Baghernejad
ChemInform Abstract: 1,4‐Diazabicyclo[2.2.2]octane (DABCO) as a Useful Catalyst in Organic Synthesis
ChemInform  42(49), , 2011
DOI: 10.1002/chin.201149222

[23]. Pramod B. Thakur, Harshadas M. Meshram
An Exploration of Organocatalyst 1,4-Diazabicyclo[2.2.2]octane in the Direct Regioselective and Chemoselective γ-Addition of β-Keto Amide on Isatin to Afford Structurally Diverse Molecular Frameworks
Australian Journal of Chemistry  68(3), 453, 2015
DOI: 10.1071/CH14239

[24]. Dmitry I. Bugaenko
1,4-Diazabicyclo[2.2.2]octane in the synthesis of piperazine derivatives (microreview)
Chemistry of Heterocyclic Compounds  53(12), 1277, 2017
DOI: 10.1007/s10593-018-2205-2

[25]. Ali Reza Kiasat, Jamal Davarpanah
n-Propyl-4-aza-1-azoniabicyclo[2.2.2]octane chloride-SBA-15 (SBA-DABCO) as basic mesoporous catalyst for the synthesis of 1,4-dihydropyridine hetrocyclic compounds
Catalysis Communications  69, 179, 2015
DOI: 10.1016/j.catcom.2015.06.019

[26]. Pradeep Paliwal, Srinivasa Rao Jetti, Anjna Bhatewara, Tanuja Kadre, Shubha Jain
DABCO Catalyzed Synthesis of Xanthene Derivatives in Aqueous Media
ISRN Organic Chemistry  2013, 1, 2013
DOI: 10.1155/2013/526173

[27]. Eileen Hao Yu, Richard Burkitt, Xu Wang, Keith Scott
Application of anion exchange ionomer for oxygen reduction catalysts in microbial fuel cells
Electrochemistry Communications  21, 30, 2012
DOI: 10.1016/j.elecom.2012.05.011

[28]. Alireza Hasaninejad, Mohsen Shekouhy, Nooshin Golzar, Abdolkarim Zare, Mohammad Mahdi Doroodmand
Silica bonded n-propyl-4-aza-1-azoniabicyclo[2.2.2]octane chloride (SB-DABCO): A highly efficient, reusable and new heterogeneous catalyst for the synthesis of 4H-benzo[b]pyran derivatives
Applied Catalysis A: General  402(1-2), 11, 2011
DOI: 10.1016/j.apcata.2011.04.012

[29]. E. P. Zhil’tsova, M. R. Ibatullina, S. S. Lukashenko, I. R. Nizameev, M. K. Kadirov, L. Ya. Zakharova
Catalytic Systems Based on the Metal Complexes of 1-Alkyl-4-Aza-1-Azoniabicyclo[2.2.2]Octane Bromides
Kinetics and Catalysis  61(2), 269, 2020
DOI: 10.1134/S0023158420010140

[30]. Vadahanambi Sridhar, Inwon Lee, Hyun Park
Metal Organic Frameworks Derived Fe-N-C Nanostructures as High-Performance Electrodes for Sodium Ion Batteries and Electromagnetic Interference (EMI) Shielding
Molecules  26(4), 1018, 2021
DOI: 10.3390/molecules26041018

[31]. Cyprian M. M’thiruaine, Holger B. Friedrich, Evans O. Changamu, Muhammad D. Bala
Reactions of N-heterocyclic ligands with substitutionally labile organometallic complexes, [(η5-C5R5)Fe(CO)2E]BF4
Inorganica Chimica Acta  390, 83, 2012
DOI: 10.1016/j.ica.2012.04.003

[32]. Siddhant Basel, Karishma Bhardwaj, Sajan Pradhan, Anand Pariyar, Sudarsan Tamang
DBU-Catalyzed One-Pot Synthesis of Nearly Any Metal Salt of Fatty Acid (M-FA): A Library of Metal Precursors to Semiconductor Nanocrystal Synthesis
ACS Omega  5(12), 6666, 2020
DOI: 10.1021/acsomega.9b04448

[33]. Mohammad Reza Salari, Mohammad H. Mosslemin, Alireza Hassanabadi
Diastereoselective Synthesis of Functionalised Trans-Tetrahydrobenzofuran-4-Ones in an Aqueous Medium by using DABCO as an Efficient Catalyst
Journal of Chemical Research  41(11), 657, 2017
DOI: 10.3184/174751917X15094552081215

[34]. Niels Ole Giltzau, Martin Köckerling
IUCrData  5(1), , 2020
DOI: 10.1107/S2414314620000231

[35]. Manoj Kumar, Sourav Bagchi, Anuj Sharma
The first vinyl acetate mediated organocatalytic transesterification of phenols: a step towards sustainability
New Journal of Chemistry  39(11), 8329, 2015
DOI: 10.1039/C5NJ01436K

[36]. Ramin Ghorbani-Vaghei, Azadeh Shahriari, Jafar Mahmoodi, Yaser Maghbooli
Effective DABCO-catalyzed synthesis of new tetrazolo[1,5-a]pyrimidine analogs
Molecular Diversity  21(4), 865, 2017
DOI: 10.1007/s11030-017-9760-9

[37]. James E. Wells, Frederick C. Wilhelm, James F. White, Nance K. Dicciani
Synthesis of 1,4-Diazabicyclo [2,2,2] Octane with Alkaline Earth Phosphate Catalysts
Organic Process Research & Development  20(6), 1044, 2016
DOI: 10.1021/acs.oprd.6b00096

[38]. Pramod B Thakur
DABCO Catalyzed Efficient Addition of Acetyl Acetone on Isatins Under Neat Condition to Afford 3-hydroxy-3-((E)-2-hydroxy-4-oxopent-2-enyl) indolin-2-one Derivatives
International Journal of Advanced Research in Science, Communication and Technology  , 126, 2021
DOI: 10.48175/IJARSCT-2363

[39]. J. R. Patel, B. Z. Dholakiya
Synthesis of 1-(4-((E)-3-arylacryloyl) phenyl)-3,4-dibromo-1H-pyrrole-2,5-diones and screening for anti-Candida and antituberculosis activity
Medicinal Chemistry Research  21(8), 1977, 2012
DOI: 10.1007/s00044-011-9718-x

[40]. Razieh Mohebat, Afshin Yazdani-Elah-Abadi, Malek-Taher Maghsoodlou, Nourallah Hazeri
DABCO-catalyzed multi-component domino reactions for green and efficient synthesis of novel 3-oxo-3 H -benzo[ a ]pyrano[2,3- c ]phenazine-1-carboxylate and 3-(5-hydroxybenzo[ a ]phenazin-6-yl)acrylate derivatives in water
Chinese Chemical Letters  28(5), 943, 2017
DOI: 10.1016/j.cclet.2016.12.042

[41]. Anam Nawaz, Sana Aslam, Matloob Ahmad, Ameer Fawad Zahoor, Syed Ali Raza Naqvi
Synthetic strategies of pyran derivatives by multicomponent reaction (MCR) approach
Journal of the Iranian Chemical Society  19(9), 3721, 2022
DOI: 10.1007/s13738-022-02581-0

[42]. Yu. N. Vorobjev
Design of an Efficient Inhibitor for the Influenza A Virus M2 Ion Channel
Molecular Biology  54(2), 281, 2020
DOI: 10.1134/S0026893320020168

[43]. Dhouha Ben Hassan, Houcine Naïli, Walid Rekik
Spectroscopic, Structural and Thermal Properties of Three New Metal Nitrates Templated by DABCO: (C6H14N2)[MII(H2O)6](NO3)4 with MII: Mn, Ni and Zn
Journal of Inorganic and Organometallic Polymers and Materials  30(7), 2480, 2020
DOI: 10.1007/s10904-020-01495-9

[44]. Saeideh Salimi, Kamran Akhbari, S. Morteza F. Farnia, Jonathan M. White
Multiple Construction of a Hierarchical Nanoporous Manganese(II)-Based Metal–Organic Framework with Active Sites for Regulating N2 and CO2 Trapping
Crystal Growth & Design  22(3), 1654, 2022
DOI: 10.1021/acs.cgd.1c01183

[45]. Dipali N. Lande, Maneesha N. Shewale, Shridhar P. Gejji
Host–Guest Interactions Accompanying the Encapsulation of 1,4-Diazabicyclo[2.2.2]octane within endo-Functionalized Macrocycles
The Journal of Physical Chemistry A  121(19), 3792, 2017
DOI: 10.1021/acs.jpca.7b02238

[46]. Nitika Grover, Keith J. Flanagan, Cristina Trujillo, Christopher J. Kingsbury, Mathias O. Senge
An Insight into Non‐Covalent Interactions on the Bicyclo[1.1.1]pentane Scaffold
European Journal of Organic Chemistry  2021(7), 1113, 2021
DOI: 10.1002/ejoc.202001564

[47]. Nenad Maraš, Marijan Kočevar
Effects of tertiary amine catalysis on the regioselectivity of anisole chlorination with trichloroisocyanuric acid
Monatshefte für Chemie - Chemical Monthly  146(4), 697, 2015
DOI: 10.1007/s00706-014-1383-6

[48]. Anton S. Nizovtsev, Maxim R. Ryzhikov, Svetlana G. Kozlova
Structural flexibility of DABCO. Ab initio and DFT benchmark study
Chemical Physics Letters  667, 87, 2017
DOI: 10.1016/j.cplett.2016.11.042

[49]. Takallum Khan, Ritu Yadav, Surendra Singh Gound
An Efficient Synthesis and Antibacterial Activity of Some Novel 2‐Azetidinone Derivatives of 4H‐1,2,4‐Triazoles Under Mild Conditions
Journal of Heterocyclic Chemistry  55(4), 1042, 2018
DOI: 10.1002/jhet.3136

[50]. Anssi Peuronen, Arto Valkonen, Minna Kortelainen, Kari Rissanen, Manu Lahtinen
Halogen Bonding-Based “Catch and Release”: Reversible Solid-State Entrapment of Elemental Iodine with Monoalkylated DABCO Salts
Crystal Growth & Design  12(8), 4157, 2012
DOI: 10.1021/cg300669t

[51]. Anna K. Drabczyk, Damian Kułaga, Przemysław Zaręba, Wiktoria Tylińska, Wojciech Bachowski, Aneta Archała, Artur Wnorowski, Andromachi Tzani, Anastasia Detsi, Jolanta Jaśkowska
Eco-friendly synthesis of new olanzapine derivatives and evaluation of their anticancer potential
RSC Advances  13(30), 20467, 2023
DOI: 10.1039/D3RA03926A

[52]. S.G. Kozlova, I.V. Mirzaeva, M.R. Ryzhikov
DABCO molecule in the M2(C8H4O4)2·C6H12N2 (M = Co, Ni, Cu, Zn) metal-organic frameworks
Coordination Chemistry Reviews  376, 62, 2018
DOI: 10.1016/j.ccr.2018.07.008

[53]. Ratnasekhar Ch, Mohit Tyagi, Premanand Ramrao Patil, K.P. Ravindranathan Kartha
DABCO: an efficient promoter for the acetylation of carbohydrates and other substances under solvent-free conditions
Tetrahedron Letters  52(44), 5841, 2011
DOI: 10.1016/j.tetlet.2011.08.141

[54]. Shubha Jain, Deepika Rajguru, Balwant S. Keshwal, Aman D. Acharya
Solvent-Free Green and Efficient One-Pot Synthesis of Dihydropyrano[3,2-c]chromene Derivatives
ISRN Organic Chemistry  2013, 1, 2013
DOI: 10.1155/2013/185120

[55]. Mohammad Hossein Mosslemin, Elham Zarenezhad, Nasim Shams, Mohammad Navid Soltani Rad, Hossein Anaraki-Ardakani, Rassol Fayazipoor
Green Synthesis of 5-aryl-(1H,3H,5H,10H)-pyrimido[4,5-b]quinoline-2,4-diones Catalysed by 1,4-diazabicyclo[2.2.2]octane in Water
Journal of Chemical Research  38(3), 169, 2014
DOI: 10.3184/174751914X13917105358323

[56]. Ponnam Satyanarayana, Ganapam Manohar Reddy, Hariharasharma Maheswaran, Mannepalli Lakshmi Kantam
Tris(acetylacetonato)rhodium(III)‐Catalyzed α‐Alkylation of Ketones, β‐Alkylation of Secondary Alcohols and Alkylation of Amines with Primary Alcohols
Advanced Synthesis & Catalysis  355(9), 1859, 2013
DOI: 10.1002/adsc.201300061

[57]. Arjun Kumbhar
Functionalized nitrogen ligands for palladium catalyzed cross-coupling reactions (part I)
Journal of Organometallic Chemistry  848, 22, 2017
DOI: 10.1016/j.jorganchem.2017.07.009


[1]. Yang, H.; Tian, R.; Li, Y. Front. Chem. China. 2008, 3, 279-287.

[2]. Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis. 3rd ed. New York: Wiley, 1999, 115-122.

[3]. Khodabakhsh, N.; Zolfigol, M. A.; Chehardoli, Gh.; dehghanian, M. Chin. J. Catal, 2008, 29, 901-906.

[4]. Calinaud, P.; Gelas, J. In Preparative Carbohydrate Chemistry; Hanessian, S., Ed.; Marcel Dekker: New York, 1996, pp 3-33.

[5]. Clode, D. M. Chem. Rev. 1979, 79, 491-513.

[6]. Meng, X. B.; Li, Y. F.; Li, Z. J. Carbohydr. Res. 2007, 342, 1101-1104.

[7]. Gadakh, B. K.; Patil, P. R.; Malik, S.; Kartha, K. P. R. A Synth. Commun. 2009, 39, 2430-2438.

[8]. Pawda, A.; Pearson, W. H., Lian, B. W.; Bergmeier, S. C., in: Comprehensive Heterocyclic Chemistry II (Eds.: A. R. Katritzky, C. W. Rees, E. F. V. Scriven); Pergamon: New York, 1996.

[9]. Wu, J.; Sun, X.; Li, Y. Eur. J. Org. Chem. 2005, 4271-4275.

[10]. Fernandez, J. M. G.; Mellet, C. O.; Blanco, J. L. J.; Mota, J. F.; Gadelle, A.; Coste Sarguet, A.; Defaye, J. Carbohydr. Res. 1995, 268, 57-71.

[11]. Mukerjee, A. K.; Ashare, R. Chem. Rev. 1991, 91, 1-24.

[12]. Munch, H.; Hansen, J. S.; Pittelkow, M. S.; Christensen, J. B.; Boas, U. Tetrahedron Lett. 2008, 49, 3117-3119.

[13]. Green, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, JohnWiley, New York, 1991, 2nd ed.

[14]. Corey, E. J.; Ching, X. M. The Logic of Chemical Synthesis, John Wiley & Sons, New York, 1989.

[15]. Sharafi, T.; Heravi, M. M. Phosphorus. Sulfur. Silicon. Relat. Elem. 2004, 179, 2437-2440.

[16]. Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 3rd edn.;Wiley-Interscience: New York, 1999, 49-54.

[17]. Heravi, M.; Derikvand, F.; Ghassemzadeh, M.; Neumuller, B. Tetrahedron Lett. 2005, 46, 6243-6245.

[18]. Tajbakhsh, M.; Heravi, M. M.; Habibzadeh, S. Synth. Commun. 2007, 37, 2967-2973.

[19]. Zorn, C.; Gnad, F.; Salmen, S.; Herpinb, T.; Reisera, O. Tetrahedron Lett. 2001, 42, 7049-7053.

[20]. Hajipour, A. R.; Mazloumi, A. Synth. Commun. 2002, 32, 23-30.

[21]. Asadolah, K.; Heravi, M. M.; Hekmatshoar, R. Rus. J. Org. Chem. 2009, 45, 1110-1111.

[22]. Ogliaruso, M. A.; Wolfe, J. F. Synthesis of Carboxylic Acids, Esters and Their Derivatives, John Wiley & Sons, New York, 1991, 198-217.

[23]. Fife, W. K.; Zhang, Z. D. Tetrahedron Lett. 1986, 27, 4933.

[24]. Kazemi, F.; Kiasat, A. L. Phosphorus. Sulfur. Silicon. Relat. Elem. 2003, 178, 2287-2291.

[25]. Onishi, H. R.; Pelak, B. A.; Silver, L. L.; Kahan, F. M.; Chen, M.-H.; Patchett, A. A.; Galloway, S. M.; Hyland, S. A.; Anderson, M. S.; Raetz, C. R. H. Science, 1996, 274, 980-982.

[26]. Wipf, P.; Venkatraman, S. J. J. Org. Chem. 1995, 60, 7224-7229.

[27]. Green, T. W.; Wutz, P. G. M. Protecting Groups in Organic Synthesis, 2nd ed.; John Wiley and Sons: New York, 1991.

[28]. McManus, H. A.; Guiry, P. J. Chem. Rev. 2004, 104, 4151-4202.

[29]. Cecchi, L.; Sarloa, F. D.; Machetti, F. Tetrahedron Lett. 2005, 46, 7877-7879.

[30]. Luzzio, F. A. Tetrahedron, 2001, 57, 915-945.

[31]. Palomo, C.; Oiarbide, M.; Mielgo, A. Angew. Chem. Int. Ed. 2004, 43, 5442-5444.

[32]. Mastryukova, T. A.; Baranov, G. M.; Perekalin, V. V.; Kabachinick, M. I. Dol. Akad.Nauk, SSSR. 1966, 171, 1341-1346.

[33]. Samanta, S.; Zhao, C. C. Arkivoc, 2007, 13, 218-226.

[34]. Heck, R. F. Palladium Reagents in Organic Synthesis, Academic Press, London, 1985.

[35]. Li, J.-H.; Wang, D.-P.; Xie, Y.-X. Synthesis, 2005, 13, 2193-2197.

[36]. Morita, K.; Suzuki, Z.; Hirose, H. Bull. Chem. Soc. Jpn. 1968, 41, 2815.

[37]. Vesely, J.; Rios, R.; Cordova, L. Tetrahedron Lett. 2008, 49, 1137-1140.

[38]. Richter, H.; Jung, G. Tetrahedron Lett. 1998, 39, 2729-2730.

[39]. Zhang, F.; Wang, X. J.; Cai, C. X.; Liu, J. T. Tetrahedron. 2009, 65, 83-86.

[40]. Basavaiah, V. V. L. Gowriswari, T. K. Tetrahedron Lett. 1987, 28, 4591-4592.

[41]. Shi, M.; Xu, Y.-M. Chem. Commun. 2001, 1876-1877.

[42]. Bhuniya, D.; Mohan, S.; Narayanan, S. Synthesis, 2003, 1018-1024.

[43]. Zhao, G. L.; Shi, M. Tetrahedron, 2005, 61, 7277-7288.

[44]. Heravi, M. M.; Derikvanda, F.; Ghassemzadeh, M. South. Afr. J. Chem. 2006, 59, 125-128.

[45]. Fey, T.; Fischer, H.; Bachmann, S.; Albert, K.; Bolm, C. J. Org. Chem. 2001, 99, 8154.

[46]. Heravi, M. M.; Derikvand, F.; Ghassemzadeh, M.; Neumuller, B. Tetrahedron Lett. 2005, 46, 6243-6245.

[47]. Lima, L. M.; Castro, P.; Machado, A. L.; Fraga, C. A. M.; Lugniur, C.; Moraes, V. L. G.; Barreiro, E. J. Bio Org. Med. Chem. 2002, 10, 3067-3073.

[48]. Heravi, M. M.; Hekmat Shoar, R.; Pedram. L. J. Mol. Catal. A: Chem. 2005, 231, 89-91.

[49]. Shi, Y. J.; Humphrey, G.; Maligres, P. E.; Reamer, R. A.; Williams, J. M. Adv. Synth. Catal. 2006, 348, 309 - 312.

[50]. Shieh, W. C.; Lozanov, M.; Loo, M.; Repic, L.; Blacklock, T. J. Tetrahedron Lett. 2003, 44, 4563-4565.

[51]. Shieh, W. C.; Lozanov, M.; Repic, O. Tetrahedron Lett. 2003, 44, 6943-6945.

[52]. Ramachandran, P. V.; Rudd, M. T.; Reddy, M. V. R. Tetrahedron Lett. 1999, 40, 3819-3822.

[53]. Turki, T.; Villierasb, J.; Amr, H. Tetrahedron Lett. 2005, 46, 3071-3072.

[54]. Balalaie, S.; Ramezanpour, S.; Bararjanian, M.; Gross, J. H. Synth. Commun. 2008, 38, 1078-1089.

[55]. Heravi, M. M.; Derikvand, F.; Ghassemzadeh, M. Synth. Commun. 2006, 36, 581-585.

[56]. Yang, L.; Xu; L.; Yu, C. Phosphorus. Sulfur. Silicon. Relat. Elem. 2009, 184, 2049.

[57]. Diana, G. D.; Cutcliffe, D.; Volkots, D. L.; Mallamo, J. P.; Bailey, T. R.; Vescio, N.; Oglesby, R.C.; Nitz, T. J.; Wetzel, J.; Giranda, V.; Pevear, D. C.; Dutko, F. J. J. Med. Chem. 1993, 36, 3240-3250.

[58]. Romero, M.; Renard, P.; Caignard, D. H.; Atassi, G.; Solans, X.; Constans, P.; Bailly, C.; Pujol, M. D. J. Med. Chem. 2007, 50, 294-315.

[59]. Heravi, M. M.; Bakhtiari, K.; Hekmat Shoar, R.; Oskooie, H. A. J. Chem. Res. 2005, 9, 590-591.

[60]. Krishna, P. R.; Sekhar, E. R.; Mongin, F. Tetrahedron Lett. 2008, 49, 6768-6772.

[61]. Hon, Y. S.; Kao, Ch. Y. Tetrahedron Lett. 2009, 50, 748-751.

[62]. Ding, Q.; Wanga, B.; Wu, J. Tetrahedron Lett. 2007, 48, 8599-8602.

[63]. Hudlick, M. Oxidations in Organic Chemistry; American Chemical Society: Washington, DC, 1990.

[64]. Jiang, N.; Ragauskas, A. R. Tetrahedron Lett. 2007, 48, 273-276.

[65]. Mason, P. H.; Emslie, N. D. Tetrahedron, 1994, 50, 12001-12008.

How to cite

Bita, B. Eur. J. Chem. 2010, 1(1), 54-60. doi:10.5155/eurjchem.1.1.54-60.2
Bita, B. 1,4-Diazabicyclo[2.2.2]octane (DABCO) as a useful catalyst in organic synthesis. Eur. J. Chem. 2010, 1(1), 54-60. doi:10.5155/eurjchem.1.1.54-60.2
Bita, B. (2010). 1,4-Diazabicyclo[2.2.2]octane (DABCO) as a useful catalyst in organic synthesis. European Journal of Chemistry, 1(1), 54-60. doi:10.5155/eurjchem.1.1.54-60.2
Bita, Baghernejad. "1,4-Diazabicyclo[2.2.2]octane (DABCO) as a useful catalyst in organic synthesis." European Journal of Chemistry [Online], 1.1 (2010): 54-60. Web. 10 Dec. 2023
Bita, Baghernejad. "1,4-Diazabicyclo[2.2.2]octane (DABCO) as a useful catalyst in organic synthesis" European Journal of Chemistry [Online], Volume 1 Number 1 (31 March 2010)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item

DOI Link:

CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley

European Journal of Chemistry 2010, 1(1), 54-60 | doi: | Get rights and content


  • There are currently no refbacks.

Copyright (c)

© Copyright 2010 - 2023  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.