European Journal of Chemistry

Adsorption and diffusion of H2 and CO on UiO-66: A Monte Carlo simulation study

Crossmark


Main Article Content

Negin Davoodian
Zahra Khoshbin

Abstract

Metal-organic frameworks (MOFs) are a new class of nanoporous materials that have attracted much attention for the adsorption of small molecules, due to the large size of the cavities. In this study, we investigate the adsorption and diffusion of hydrogen (H2) and carbon monoxide (CO) guest molecules to the UiO-66 framework, as one of the most widely used MOFs, by using Monte Carlo simulation method. The results prove that an increment in the temperature decreases the amount of the adsorbed H2 and CO on the UiO-66 framework. While an enhancement of the pressure increases the amount of the adsorbed H2 and CO on the UiO-66 framework. Besides, the adsorption of H2 and CO on UiO-66 is the type I isotherm. The calculated isosteric heat for CO/UiO-66 is slightly higher than that of H2/UiO-66. The means of square displacement (MSD) value is less for CO molecule; hence, the movement of the guest molecule within the host cavity slows down and the guest molecule travels a shorter distance over a period of time. The guest molecule with higher molecular mass possesses less mobility, and therefore, it will have less permeability.


icon graph This Abstract was viewed 994 times | icon graph Article PDF downloaded 563 times

How to Cite
(1)
Davoodian, N.; Khoshbin, Z. Adsorption and Diffusion of H2 and CO on UiO-66: A Monte Carlo Simulation Study. Eur. J. Chem. 2020, 11, 217-222.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Sun, X.; Li, J.; Qiao, H.; Zhang, B. Appl. Energy 2017, 196, 118-131. ‏
https://doi.org/10.1016/j.apenergy.2016.12.088

[2]. Niakolas, D. K.; Daletou, M.; Neophytides, S. G.; Vayenas, C. G. Ambio. 2016, 45(1), 32-37. ‏
https://doi.org/10.1007/s13280-015-0731-z

[3]. Das, V.; Padmanaban, S.; Venkitusamy, K.; Selvamuthukumaran, R.; Blaabjerg, F.; Siano, P. Renew. Sust. Energ. Rev. 2017, 73, 10-18. ‏
https://doi.org/10.1016/j.rser.2017.01.148

[4]. Gilman, S. J. Phys. Chem. 1963, 67(1), 78-84. ‏
https://doi.org/10.1021/j100795a018

[5]. Shadman, M.; Yeganegi, S.; Galugahi, M. R. J. Iranian Chem. Soc. 2016, 13(2), 207-220. ‏
https://doi.org/10.1007/s13738-015-0728-3

[6]. Tian, Z.; Dong, S. Inter. J. Hydrog. Energy 2016, 41(2), 1053-1059. ‏
https://doi.org/10.1016/j.ijhydene.2015.10.031

[7]. Zhang, W.; Zhang, Z.; Zhang, F.; Yang, W. Appl. Surf. Sci. 2016, 386, 247-254. ‏
https://doi.org/10.1016/j.apsusc.2016.06.019

[8]. Yang, S.; Lin, X.; Dailly, A.; Blake, A. J.; Hubberstey, P.; Champness, N. R.; Schroder, M. Chem. Eur. J. 2009, 15(19), 4829-4835. ‏
https://doi.org/10.1002/chem.200802292

[9]. Gomez, D. A.; Sastre, G. Phys. Chem. Chem. Phys. 2011, 13(37), 16558-16568. ‏
https://doi.org/10.1039/c1cp21865d

[10]. Zhang, F. M.; Sheng, J. L.; Yang, Z. D.; Sun, X. J.; Tang, H. L.; Lu, M.; Lan, Y. Q. Angew. Chem. Inter. 2018, 57(37), 12106-12110. ‏
https://doi.org/10.1002/anie.201806862

[11]. Li, J. R.; Ma, Y.; McCarthy, M. C.; Sculley, J.; Yu, J.; Jeong, H. K.; Zhou, H. C. Coord. Chem. Rev. 2011, 255(15-16), 1791-1823. ‏
https://doi.org/10.1016/j.ccr.2011.02.012

[12]. Rowsell, J. L.; Spencer, E. C.; Eckert, J.; Howard, J. A.; Yaghi, O. M. Science 2005, 309(5739), 1350-1354. ‏
https://doi.org/10.1126/science.1113247

[13]. Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. Pure Appl. Chem. 2015, 87(9-10), 1051-1069. ‏
https://doi.org/10.1515/pac-2014-1117

[14]. Yang, Z.; Xia, Y.; Sun, X.; Mokaya, R. J. Phys. Chem. B 2006, 110(37), 18424-18431. ‏
https://doi.org/10.1021/jp0639849

[15]. Xie, H.; Shen, Y.; Zhou, G.; Chen, S.; Song, Y.; Ren, J. Mater. Chem. Phys. 2013, 141(1), 203-207.
https://doi.org/10.1016/j.matchemphys.2013.04.045

[16]. Greathouse, J. A.; Allendorf, M. D. J. Am. Chem. Soc. 2016, 128(33), 10678-10679. ‏
https://doi.org/10.1021/ja063506b

[17]. Zheng, B.; Yun, R.; Bai, J.; Lu, Z.; Du, L.; Li, Y. Inorg. Chem. 2013, 52(6), 2823-2829. ‏
https://doi.org/10.1021/ic301598n

[18]. Belof, J. L.; Stern, A. C.; Eddaoudi, M.; Space, B. J. Am. Chem. Soc. 2007, 129(49), 15202-15210. ‏
https://doi.org/10.1021/ja0737164

[19]. Colon, Y. J.; Brand, S. K.; Snurr, R. Q. Chem. Phys. Lett. 2013, 577, 76-81.
https://doi.org/10.1016/j.cplett.2013.05.021

[20]. Yang, Q.; Zhong, C. J. Phys. Chem. B 2005, 109(24), 11862-11864. ‏
https://doi.org/10.1021/jp051903n

[21]. BIOVIA Materials Studio, Retrieved Aug 01, 2020, from https://www.3ds.com/products-services/biovia/products/ molecular-modeling-simulation/biovia-materials-studio/

[22]. Valenzano, L.; Civalleri, B.; Chavan, S.; Bordiga, S.; Nilsen, M. H.; Jakobsen, S.; Lamberti, C. Chem. Mater. 2011, 23(7), 1700-1718. ‏
https://doi.org/10.1021/cm1022882

[23]. Fast, C. D.; Woods, J.; Lentchner, J.; Makal, T. A. Dalton Trans. 2019, 48(39), 14696-14704. ‏
https://doi.org/10.1039/C9DT03004B

[24]. Zhou, L.; Zhou, Y. Inter. J. Hydrog. Energ. 2001, 26(6), 597-601. ‏
https://doi.org/10.1016/S0360-3199(00)00123-3

[25]. Chen, C.; Chen, D.; Xie, S.; Quan, H.; Luo, X.; Guo, L. ACS Appl. Mater. Interf. 2017, 9(46), 41043-41054. ‏
https://doi.org/10.1021/acsami.7b13443

[26]. Uneyama, T.; Miyaguchi, T.; Akimoto, T. Phys. Rev. E 2015, 92(3), 032140. ‏
https://doi.org/10.1103/PhysRevE.92.032140

[27]. Solcova, O.; Snajdaufova, H.; Schneider, P. Chem. Eng. Sci. 2001, 56(17), 5231-5237. ‏
https://doi.org/10.1016/S0009-2509(01)00149-X

Supporting Agencies

The Research Council of Ferdowsi University of Mashhad (Grant No. 3/45796), Mashhad 91775-1436, Iran.
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).