

Crystal structure of 4-(dimethylamino)pyridin-1-ium-2,5-dichloro-3,6-dioxocyclohexa-1,4-diene-1,4-bis(olate) 4-dimethylaminopyridine (2:1) water undeca-solvate
Alebel Nibret Belay (1,*)



(1) Department of Chemistry, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
(2) Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
(3) Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
(*) Corresponding Author
Received: 06 Aug 2020 | Revised: 27 Aug 2020 | Accepted: 29 Aug 2020 | Published: 30 Sep 2020 | Issue Date: September 2020
Abstract
The structure of the title compound, 4-(dimethylamino)pyridin-1-ium-2,5-dichloro-3,6-dioxocyclohexa-1,4-diene-1,4-bis(olate) 4-dimethylaminopyridine water undeca-solvate, C57H87Cl5N12O21, obtained from interaction between chloranilic acid (caH2), and dimethyl aminopyridine (DMAP) has been determined by single crystal X-ray diffraction. The title compound, (DMAPH)5(ca)2.5·(DMAP)·11H2O, crystallized in the triclinic crystal system with space group, P (no. 2), a = 13.3824(15) Å, b = 13.4515(17) Å, c = 19.048(2) Å, α = 86.014(4)°, β = 88.821(4)°, γ = 86.367(4)°, V = 3413.3(7) Å3, Z = 2, T = 100(2) K, μ(MoKα) = 0.294 mm-1, Dcalc = 1.414 g/cm3, 59413 reflections measured (3.76° ≤ 2Θ ≤ 56°), 16405 unique (Rint = 0.0517, Rsigma = 0.0589) which were used in all calculations. The final R1 was 0.0460 (I ≥ 2σ(I)) and wR2 was 0.1271 (all data). Using supramolecular chemistry principles, proton donors (chloranilic acid) and acceptor (DMAP) were combined to generate a multicomponent hydrogen-bonded system. Due to the presence of protonated bases (DMAPH+), the dominant interactions are the N+-H···O hydrogen bonds, whereas the negative charges of an acceptor from the chloranilate dianion (ca2-) are delocalized. Additionally, three sets of water clusters in the title compound were identified, namely a cyclic pentamer, a linear, and an acute-shaped trimer water cluster. It was further observed that strong hydrogen bond interactions occurred between the solvated aqua molecule(s) acting as a proton donor and the neutral DMAP acting as a proton acceptor. The crystal packing is further stabilized by O-H···Cl and C-H···Cl weak halogen interactions. The lattice metric strength is further held by observed π-π stacking interactions (centroid-centroid) with inter centroid distances between sets of the DMAPH rings of 3.624(3), 3.642(4), 3.739(3), 3.863(3) and 3.898(3) Å, respectively.
Announcements
One of our sponsors will cover the article processing fee for all submissions made between May 17, 2023 and June 16, 2023 (Voucher code: SPONSOR2023).
Editor-in-Chief
European Journal of Chemistry
Keywords
Full Text:
PDF

DOI: 10.5155/eurjchem.11.3.255-260.2019
Links for Article
| | | | | | |
| | | | | | |
| | | |
Related Articles
Article Metrics


Funding information
University of the Free State, Department of Chemistry, South Africa’s National Research Foundation (NRF) and the World Academy of Science (TWAS) (UIDs 99782).
Citations
[1]. Alebel Nibret Belay, Johan Andries Venter, Orbett Teboho Alexander, Andreas Roodt
Synthesis, Single Crystal X-ray Structure, Spectroscopy and Substitution Behavior of Niobium(V) Complexes Activated by Chloranilate as Bidentate Ligand
Inorganics 10(10), 166, 2022
DOI: 10.3390/inorganics10100166

References
[1]. Kawaguchi, H.; Matsuo, T. J. Organomet. Chem. 2004, 689, 4228-4243.
https://doi.org/10.1016/j.jorganchem.2004.08.004
[2]. Bruijnincx, P.; Viciano‐Chumillas, M.; Lutz, M.; Spek, A.; Reedijk, J.; van Koten, G.; Klein Gebbink, R. Chem. Eur. J. 2008, 14(18), 5567-5576.
https://doi.org/10.1002/chem.200701878
[3]. Elhabiri, M.; Haracek, J.; Bünzli, J.; Gary, A. Eur. J. Inorg. Chem. 2004, 51-62.
https://doi.org/10.1002/ejic.200300549
[4]. Kim, J.; Hong, M.; Ahn J.; Lee, M. Angew. Chem. Int. Edn. 2005, 44, 328-332.
https://doi.org/10.1002/anie.200461623
[5]. Molcanov, K.; Kojic-Prodicand, B.; Meden, A. Croat. Chem. Acta. 2009, 82(2), 387-396.
[6]. Sandeep, G.; Biprajit, S.; Somnath, M.; Vedavati, G. P.; Jan, F.; Francisco, A. U.; Reyes, J. A.; Wolfgang, K.; Goutam, K. L. Chem. Eur. J. 2008, 14(34), 10816-10828.
https://doi.org/10.1002/chem.200800976
[7]. Desfrançois, C.; Carles, S.; Schermann, J. P. Chem. Rev. 2000, 100, 3943-3962.
https://doi.org/10.1021/cr990061j
[8]. Dopfer, O.; Fujii, M. Chem. Rev. 2016, 116, 5432-5463.
https://doi.org/10.1021/acs.chemrev.5b00610
[9]. Becucci, M.; Melandri, S. Chem. Rev. 2016, 116, 5014-5037.
https://doi.org/10.1021/acs.chemrev.5b00512
[10]. Belay, A. N.; Koen, R.; Drost, R. M.; Venter, J. A. Z. Kristallogr. NCS. 2016, 231(2), 513-515.
https://doi.org/10.1515/ncrs-2015-0172
[11]. Herbst, L.; Visser, H. G.; Roodt, A. Adv. Mat. Res. 2014, 1019, 412-418.
https://doi.org/10.4028/www.scientific.net/AMR.1019.412
[12]. Koen, R.; Roodt, A.; Visser, H. G. Adv. Mat. Res. 2014, 1019, 426-432.
https://doi.org/10.4028/www.scientific.net/AMR.1019.426
[13]. Schutte, M.; Kemp, G.; Visser, H. G.; Roodt, A. Inorg. Chem. 2011, 50, 12486-12498.
https://doi.org/10.1021/ic2013792
[14]. Belay, A. N.; Venter, J. A.; Roodt, A. Z. Kristallogr. NCS 2017, 232(2), 163-164.
[15]. Sahar, I. M. Transition Met. Chem. 1999, 24, 306-310.
https://doi.org/10.1023/A:1006944124791
[16]. Bruker Apex2 (Version 2011. 4-1), Bruker AXS Inc., Madison, Wisconsin, USA, 2011.
[17]. Bruker SAINT-Plus (Version 6. 02 including XPREP), Bruker AXS Inc., Area-Detector Integration Software, Madison, Wisconsin, USA, 2012.
[18]. Bruker SADABS (Version 2004/1), Bruker AXS Inc., Area Detector Absorption Correction Software, Madison, Wisconsin, USA, 1998.
[19]. Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. J. Appl. Cryst. 1999, 32, 115-119.
https://doi.org/10.1107/S0021889898007717
[20]. Farrugia, L. J.; WinGX, J. Appl. Cryst. 2012, 45, 849-854.
https://doi.org/10.1107/S0021889812029111
[21]. Sheldrick, G. M.; SHELXL, Acta Cryst. C 2015, 71, 3-8.
https://doi.org/10.1107/S2053229614024218
[22]. Brandenburg, K.; Putz, H. DIAMOND, Release 3.0e, Crystal Impact GbR, Bonn, Germany, 2006.
[23]. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.
https://doi.org/10.1107/S0021889808042726
Supporting information
The Supplementary Material for this article can be found online at: Supplementary files
How to cite
The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item
DOI Link: https://doi.org/10.5155/eurjchem.11.3.255-260.2019

















European Journal of Chemistry 2020, 11(3), 255-260 | doi: https://doi.org/10.5155/eurjchem.11.3.255-260.2019 | Get rights and content
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Authors

This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).
© Copyright 2010 - 2023 • Atlanta Publishing House LLC • All Right Reserved.
The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.
Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.