European Journal of Chemistry 2020, 11(4), 261-275 | doi: https://doi.org/10.5155/eurjchem.11.4.261-275.2020 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Regiospecific substitution of the β-vinylic sp2 carbon of cyclohexenones bearing the α-chloro- and β-tosylate-groups: Single crystal XRD/Hirshfeld surface/in-silico studies of three representative compounds


Arkalgud Satyanarayana Jeevan Chakravart (1,*) orcid , Suresh Hari Prasad (2) orcid

(1) Department of Studies in Chemistry, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560056, India
(2) Department of Studies in Chemistry, Central College Campus, Bengaluru City University, Bengaluru, 560001, Karnataka, India
(*) Corresponding Author

Received: 11 Aug 2020 | Revised: 14 Sep 2020 | Accepted: 15 Sep 2020 | Published: 31 Dec 2020 | Issue Date: December 2020

Abstract


2-Chloro-3-tosyl-5,5-dimethyl-2-cyclohexenone was subjected to a series of regiospecific Suzuki-Miyaura cross-coupling reactions in suspensions of nine different substituted boronic acids, Pd(OAc)2, P(Ph3)3, K3PO4 and 1,4-dioxane solvent, under sealed tube conditions. The regiospecific substitution of the tosyl-group by the aryl group in preference over the chloride- group was observed. A comparison between the bromo- and tosylate group’s reactivities is highlighted. Using the methodology, the products: 2-chloro-3-aryl-5,5-dimethyl-2-cyclohexenones were isolated in greater than 85% yields. Good quality crystals of three representative compounds were obtained by slow evaporation technique and subjected to single crystal XRD studies, Hirshfeld surface analysis, 3-D energy framework, and molecular docking studies. Crystal data for compound 3; C15H17ClO4S: monoclinic, space group P21/c (no. 14), a = 8.8687(3) Å, b = 10.5537(4) Å, c = 16.6862(7) Å, β = 89.807(3)°, V = 1561.78(10) Å3, Z = 4, T = 290 K, μ(MoKα) = 0.390 mm-1, Dcalc = 1.398 g/cm3, 13623 reflections measured (6.716° ≤ 2Θ ≤ 54.962°), 3570 unique (Rint = 0.0467, Rsigma = 0.0512) which were used in all calculations. The final R1 was 0.0452 (I > 2σ(I)) and wR2 was 0.1019 (all data). Crystal data for compound 5e; C20H18O2FCl: monoclinic, space group P21/c (no. 14), a = 6.4900(5) Å, b = 18.6070(13) Å, c = 14.2146(11) Å, β = 102.324(2)°, V = 1677.0(2) Å3, Z = 4, T = 296(2) K, μ(MoKα) = 0.239 mm-1, Dcalc = 1.309 g/cm3, 25575 reflections measured (6.262° ≤ 2Θ ≤ 52.224°), 3283 unique (Rint = 0.0494, Rsigma = 0.0307) which were used in all calculations. The final R1 was 0.0875 (I > 2σ(I)) and wR2 was 0.2056 (all data). Crystal data for compound 5h; C12H13OSCl: triclinic, space group P-1 (no. 2), a = 6.7517(6) Å, b = 8.8376(9) Å, c = 12.6049(12) Å, α = 109.538(3)°, β = 98.597(3)°, γ = 90.417(3)°, V = 699.52(12) Å3, Z = 2, T = 290 K, μ(MoKα) = 0.410 mm-1, Dcalc = 1.376 g/cm3, 28754 reflections measured (6.114° ≤ 2Θ ≤ 59.288°), 3898 unique (Rint = 0.0544, Rsigma = 0.0349) which were used in all calculations. The final R1 was 0.1101 (I > 2σ(I)) and wR2 was 0.2481 (all data).


Keywords


Vinyl-chloride; Single crystal XRD; Molecular docking; Competing coupling sites; Hirshfeld surface analysis; Cyclic α,β-unsaturated ketones

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.11.4.261-275.2020

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 617 times | icon graph PDF Article downloaded 177 times

Funding information


The Council of Scientific and Industrial Research (CSIR), SRF – File no. 09/039(0119)/2018-EMR-1, Government of India, New Delhi, INDIA.

References


[1]. Li, Y.; Luo, Y.; Peng, L.; Li, Y.; Zhao, B.; Wang, W.; Lang, H.; Deng, Y.; Bai, R.; Lan, Y.; Yin, G. Nature Commun. 2020, 11, 417.
https://doi.org/10.1038/s41467-019-14016-1

[2]. Lee, H. W.; So, C. M.; Yuen, O. Y.; Wong, W. T.; Kwong, F. Y. Org. Chem. Front. 2020, 7, 926-932.
https://doi.org/10.1039/C9QO01537J

[3]. Keaveney, S. T.; Kundu, G.; Schoenebeck, F. Angew. Chem. Int. Ed. Engl. 2018, 130, 12753-12757.
https://doi.org/10.1002/ange.201808386

[4]. Komeyama, K.; Tsunemitsu, R.; Michiyuki, T.; Yoshida, H.; Osaka, I. Molecules 2019, 24, 1458-1468.
https://doi.org/10.3390/molecules24081458

[5]. Chakravarthy, A. S. J.; Pavan, K. P.; Venkatesh, G. B.; Hariprasad, S. Synthetic Commun. 2020, 50(6), 849-857.
https://doi.org/10.1080/00397911.2020.1723108

[6]. Chakravarthy, A. S. J.; Madhura, M. J.; Gayathri, V.; Hariprasad, S. Tetrahedron Lett. 2020, 60(2), 151391.

[7]. Chakravarthy, A. S. J.; Krishnamurthy, M. S.; Begum, N. S.; Hariprasad, S. Mol. Crys. Liq. Crys. 2019, 682(1), 65-76.

[8]. APEX2 Bruker, SAINT-Plus and SADABS, Bruker AXS Inc., Wisconsin, Madison, USA, 2004.

[9]. Sheldrick, G. M. Acta Cryst. C, 2015, 71, 3-8.
https://doi.org/10.1107/S2053229614024218

[10]. Spek, A. L. Acta Cryst. C 2015, 71, 9-18.
https://doi.org/10.1107/S2053229614024929

[11]. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood. P. A. J. Appl. Cryst. 2008, 41(2), 466-470.
https://doi.org/10.1107/S0021889807067908

[12]. Sreenatha, N. R.; Lakshminarayana, B. N.; Ganesha, D. P.; Gnanendra, C. R. Acta Cryst. E 2018, 74, 1451-1454.
https://doi.org/10.1107/S2056989018012173

[13]. Sreenatha, N. R.; Lakshminarayana, B. N.; Ganesha, D. P.; Vijayshankar, S.; Nagaraju, S. X-Ray Struc. Anal. Online 2018, 34, 24-25.

[14]. Spackman, M. A.; Jayatilaka, D. Cryst. Eng. Comm. 2009, 11, 19-32.
https://doi.org/10.1039/B818330A

[15]. Spackman, M. A.; McKinnon, J. J.; Jayatilaka, D. Cryst. Eng. Comm. 2008, 10(4), 377-388.

[16]. McKinnon, J. J.; Jayatilaka, D.; Spackman, M. A. Chem. Comm. 2017, 3814-3816.

[17]. Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer 17.5. The University of Western Australia, 2017.

[18]. Turner, M. J.; Grabowsky, S.; Jayatilaka, D.; Spackman, M. A. J. Phys. Chem. Lett. 2014, 5, 4249-4255.
https://doi.org/10.1021/jz502271c

[19]. Sanner, M. F. J. Mol. Grap. Mod. 1999, 17(1), 57-61.

[20]. Wallace, A. C.; Laskowski, R. A.; Thornton, J. M. Prot. Eng. 1995, 8(2), 127-134.
https://doi.org/10.1093/protein/8.2.127

[21]. McVeigh, M. S.; Kelleghan, A. V.; Yamano, M. M.; Knapp, R. R.; Garg, N. K. Org. Lett. 2020, 22(11), 4500-4504.
https://doi.org/10.1021/acs.orglett.0c01510

[22]. Geenen, S. R.; Schumann, T.; Mueller, T. J. J. J. Org. Chem. 2020, 85(15), 9737-9750.
https://doi.org/10.1021/acs.joc.0c01059

[23]. Mpungose, P. P.; Vundla, Z. P.; Maguire, G. E. M.; Friedrich, H. B. Molecules 2018, 23(7), 1676-1699.
https://doi.org/10.3390/molecules23071676

[24]. Boeyens, J. C. A. J. Cryst. Mol. Struct. 1978, 8, 317-320.
https://doi.org/10.1007/BF01200485

[25]. Cremer, D. Acta Cryst. B 1984, 40, 498-500.
https://doi.org/10.1107/S0108768184002548

[26]. Sreenatha, N. R.; Chakravarthy, A. S. J.; Suchithra, B.; Lakshminarayana, B. N.; Hariprasad, S.; Ganesha, D. P. J. Mol. Struc. 2020, 1210, 127979.
https://doi.org/10.1016/j.molstruc.2020.127979

[27]. Sreenatha, N. R.; Chakravarthy, A. S. J.; Lakshminarayana, B. N.; Hariprasad, S. J. Mol. Struc. 2021, 1225, 129116.
https://doi.org/10.1016/j.molstruc.2020.129116

[28]. Sreenatha, N. R.; Lakshminarayana, B. N.; Ganesha, D. P.; Gnanendra, C. R.; Nagaraju, S.; Madan, S. K. Chem. Data Coll. 2018, 17-18, 394-403.

[29]. Sreenatha, N. R.; Lakshminarayana, B. N.; Madan, S. K.; Mahadeva, T. N. P.; Kiran, K. S.; Vijayshankar, D, S.; Byrappa, K. Chem. Data Coll. 2017, 11-12, 131-138.

[30]. Mackenzie, C. F.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. IUCrJ 2017, 4(5), 575-587.
https://doi.org/10.1107/S205225251700848X

[31]. Gysin, S. Genes Cancer 2011, 2(3), 359-372.
https://doi.org/10.1177/1947601911412376

[32]. O'Bryan, J. P. Pharmacol Res. 2019, 139, 503-511.
https://doi.org/10.1016/j.phrs.2018.10.021

[33]. Janes, M. R.; Zhang, J.; Li, L. Cell 2018, 172(3), 578-589.e17.
https://doi.org/10.1016/j.cell.2018.01.006


Supporting information


The Supplementary Material for this article can be found online at: Supplementary files

How to cite


Chakravart, A.; Prasad, S. Eur. J. Chem. 2020, 11(4), 261-275. doi:10.5155/eurjchem.11.4.261-275.2020
Chakravart, A.; Prasad, S. Regiospecific substitution of the β-vinylic sp2 carbon of cyclohexenones bearing the α-chloro- and β-tosylate-groups: Single crystal XRD/Hirshfeld surface/in-silico studies of three representative compounds. Eur. J. Chem. 2020, 11(4), 261-275. doi:10.5155/eurjchem.11.4.261-275.2020
Chakravart, A., & Prasad, S. (2020). Regiospecific substitution of the β-vinylic sp2 carbon of cyclohexenones bearing the α-chloro- and β-tosylate-groups: Single crystal XRD/Hirshfeld surface/in-silico studies of three representative compounds. European Journal of Chemistry, 11(4), 261-275. doi:10.5155/eurjchem.11.4.261-275.2020
Chakravart, Arkalgud, & Suresh Hari Prasad. "Regiospecific substitution of the β-vinylic sp2 carbon of cyclohexenones bearing the α-chloro- and β-tosylate-groups: Single crystal XRD/Hirshfeld surface/in-silico studies of three representative compounds." European Journal of Chemistry [Online], 11.4 (2020): 261-275. Web. 26 Oct. 2021
Chakravart, Arkalgud, AND Prasad, Suresh. "Regiospecific substitution of the β-vinylic sp2 carbon of cyclohexenones bearing the α-chloro- and β-tosylate-groups: Single crystal XRD/Hirshfeld surface/in-silico studies of three representative compounds" European Journal of Chemistry [Online], Volume 11 Number 4 (31 December 2020)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.11.4.261-275.2020

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2020, 11(4), 261-275 | doi: https://doi.org/10.5155/eurjchem.11.4.261-275.2020 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2021  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2021 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.