European Journal of Chemistry

Synthesis, X-ray structure, and DFT analysis of a binary complex of 3,3'-[(3-benzimidazolyl)methylene]bis(4-hydroxy-2H-1-benzopyran-2-one): 5-Methyl-1,3-thiazol-2(3H)-imine

Crossmark


Main Article Content

Gopal Sharma
Anshul Uppal
Sumati Anthal
Madhukar Baburao Deshmukh
Priyanka Pandharinath Mohire
Tanaji Ramchandra Bhosale
Chellappanpillai Sudarsanakumar
Rajni Kant

Abstract

A combined theoretical and experimental investigation on a pharmaceutically important binary complex 3,3'-[(3-benzimidazolyl)methylene]bis(4-hydroxy-2H-1-benzopyran-2-one): 5-methyl-1,3-thiazol-2(3H)-imine is presented in this manuscript. The compound crystallizes in the monoclinic crystal system with space group Cc with unit cell parameters: a = 19.8151(8) Å, b = 15.2804(6) Å, c = 8.3950(4) Å, β = 94.0990(10)°, = 2535.36(19) Å3, Z = 4, T = 296(2) K, μ(MoKα) = 0.184 mm-1, Dcalc = 1.490 g/cm3, 35833 reflections measured (5.332° ≤ 2Θ ≤ 56.678°), 6168 unique (Rint = 0.0467, Rsigma = 0.0388) which were used in all calculations. The final R1 was 0.0435 (I > 2σ(I)) and wR2 was 0.1073 (all data). The crystal structure has been determined by the conventional X-ray diffraction method, solved by direct methods and refined by the full matrix least squares procedure. Intramolecular hydrogen bonding of the type C–H⋅⋅⋅O and O–H⋅⋅⋅O is present and the crystal structure stabilizes via N–H…O, C–H…N and O–H…N intermolecular interactions. The optimized structural parameters have been compared and the parameters like ionization potential, electron affinity, global hardness, electron chemical potential, electronegativity, and global electrophilicity based on HOMO and LUMO energy values were calculated at B3LYP/6-311G(d,p) level of theory for a better understanding of the structural properties of the binary complex.


icon graph This Abstract was viewed 1144 times | icon graph Article PDF downloaded 537 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Sharma, G.; Uppal, A.; Anthal, S.; Deshmukh, M. B.; Mohire, P. P.; Bhosale, T. R.; Sudarsanakumar, C.; Kant, R. Synthesis, X-Ray Structure, and DFT Analysis of a Binary Complex of 3,3’-[(3-benzimidazolyl)methylene]bis(4-Hydroxy-2H-1-Benzopyran-2-one): 5-Methyl-1,3-Thiazol-2(3H)-Imine. Eur. J. Chem. 2020, 11, 324-333.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Kontogiorgis, C.; Detsi, A.; Hadjipavlou-Litina, D. Exp. Opin. Therap. Pat. 2012, 22, 437-454.
https://doi.org/10.1517/13543776.2012.678835

[2]. Kostova, I. Curr. Med. Chem. Anti-Cancer Agents 2005, 5, 29-46.
https://doi.org/10.2174/1568011053352550

[3]. Weinmann, I. Coumarins: Biology, Applications and Mode of Action, John Wiley & Sons, USA, 1997, pp. 1-22.

[4]. Saeed, A.; Ashraf, S.; Florke, U.; Delgado Espinoza, Z. Y.; Erben, M. F.; Perez, H. J. Mol. Struct. 2016, 1111, 76-83.
https://doi.org/10.1016/j.molstruc.2016.01.074

[5]. Wang, K.; Liu, Z.; Guan, R.; Cao, D.; Chen, H.; Shan, Y.; Wu, Q.; Xu, Y. Spectrochim. Acta A 2015, 144, 235-242.
https://doi.org/10.1016/j.saa.2015.02.072

[6]. Perez-Cruz, F.; Vazquez-Rodriguez, S.; Matos, M. J.; Herrera-Morales, A.; Villamena, F. A.; Das, A.; Gopalakrishnan, B.; Olea-Azar, C.; Santana, L.; Uriarte, E. J. Med. Chem. 2013, 56, 6136-6145.
https://doi.org/10.1021/jm400546y

[7]. Saeed, A.; Zaib, S.; Ashraf, S.; Iftikhar, J.; Muddassar, M.; Zhang, K. Y. J.; Iqbal, J. Bioorg. Chem. 2015, 63, 58-63.
https://doi.org/10.1016/j.bioorg.2015.09.009

[8]. Medina, F. G.; Marrero, J. G.; Macias-Alonso, M.; Gonzalez, M. C.; Cordova-Guerrero, I.; Teissier Garcia, A. G.; Osegueda-Robles, S. Nat. Prod. Rep. 2015, 32, 1472-1507.
https://doi.org/10.1039/C4NP00162A

[9]. Smyth, T.; Ramachandran, V. N.; Smyth, W. F. Int. J. Antimicrob. Agents 2009, 33, 421-426.
https://doi.org/10.1016/j.ijantimicag.2008.10.022

[10]. Manvar, A.; Malde, A.; Verma, J.; Virsodia, V.; Mishra, A.; Upadhyay, K.; Acharya, H.; Coutinho, E.; Shah, A. Eur. J. Med. Chem. 2008, 43, 2395-2403.
https://doi.org/10.1016/j.ejmech.2008.01.016

[11]. Belluti, F.; Fontana, G.; Dal Bo, L.; Carenini, N.; Giommarelli, C.; Zunino, F. Bioorg. Med. Chem. 2010, 18, 3543-3550.
https://doi.org/10.1016/j.bmc.2010.03.069

[12]. Yu, D.; Suzuki, M.; Xie, L.; Morris-Natschke, S. L.; Lee, K. H. Med. Res. Rev. 2003, 23, 322-345.
https://doi.org/10.1002/med.10034

[13]. Kalkhambkar, R. G.; Kulkarni, G. M.; Kamanavalli, C. M.; Premkumar, N.; Asdaq, S. M. B.; Sun, C. M. Eur. J. Med. Chem. 2008, 43, 2178-2188.
https://doi.org/10.1016/j.ejmech.2007.08.007

[14]. Keri, R. S.; Hosamani, K. M.; Shingalapur, R. V.; Hugar, M. H. Eur. J. Med. Chem. 2010, 45, 2597-2605.
https://doi.org/10.1016/j.ejmech.2010.02.048

[15]. Wood, W. J.; Patterson, A. W.; Tsuruoka, H.; Jain, R. K.; Ellman, J. A. J. Am. Chem. Soc. 2005, 127, 15521-15527.
https://doi.org/10.1021/ja0547230

[16]. Sashidhara, K. V.; Kumar, A.; Kumar, M.; Sarkar, J.; Sinha, S.; Bioorg. Med. Chem. Lett. 2010, 20, 7205-7211.
https://doi.org/10.1016/j.bmcl.2010.10.116

[17]. Radanyi, C.; Le Bras, G. l.; Messaoudi, S.; Bouclier, C. l.; Peyrat, J. F. o.; Brion, J. D.; Marsaud, V. r.; Renoir, J. M.; Alami, M. d.; Bioorg. Med. Chem. Lett. 2008, 18, 2495-2498.
https://doi.org/10.1016/j.bmcl.2008.01.128

[18]. Chimenti, F.; Secci, D.; Bolasco, A.; Chimenti, P.; Granese, A.; Befani, O.; Turini, P.; Alcaro, S.; Ortuso, F. Bioorg. Med. Chem. Lett. 2004, 14, 3697-3703.
https://doi.org/10.1016/j.bmcl.2004.05.010

[19]. Nolan, A. K.; Doncaster, R. J.; Dunstan, S. M.; Scot, A. K.; Frenkel, D.; Siegel, D.; Ross, D.; Barnes, J.; Levy, C.; Leys D. J. Med. Chem. 2009, 57, 7142-7156.
https://doi.org/10.1021/jm9011609

[20]. Mahajan, D. H.; Pannecouque, C.; De Clercq, E.; Chikhalia, K. H. Arch. Pharm. 2009, 342, 281-290.
https://doi.org/10.1002/ardp.200800149

[21]. Zhao, H.; Neamati, N.; Hong, H.; Mazumder, A.; Wang, S.; Sunder, S.; Milne, G. W. A.; Pommier, Y.; Burke, T. R. J. Med. Chem. 1997, 40, 242-249.
https://doi.org/10.1021/jm960450v

[22]. Saeed, A.; Arif, M.; Erben, M. F.; Florke, U.; Simpson, J. Spectrochim. Acta A 2018, 198, 290-296.
https://doi.org/10.1016/j.saa.2018.03.036

[23]. Luo, Y.; Yao, J.; Yang, L.; Feng, C.; Tang, W.; Wang, G.; Zuo, J.; Lu. W. Arch. Pharm. Chem. Life Sci. 2011, 2, 78-83.
https://doi.org/10.1002/ardp.201000167

[24]. Arjmand, F.; Aziz, M. Eur. J. Med. Chem. 2009, 44, 834-844.
https://doi.org/10.1016/j.ejmech.2008.05.006

[25]. Osman, H.; Arshad, A.; Lam, C. K.; Bagley, M. C. Chem. Cent. J. 2012, 6, 32-42.
https://doi.org/10.1186/1752-153X-6-32

[26]. Bruker (2009). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

[27]. Sheldrick, G. M. Acta Cryst. A 2008, 64, 112-122.
https://doi.org/10.1107/S0108767307043930

[28]. Sheldrick, G. M. Acta Cryst. C 2015, 71, 3-8.
https://doi.org/10.1107/S2053229614024218

[29]. Farrugia, L. J. J. Appl. Cryst 2012, 45, 849-854.
https://doi.org/10.1107/S0021889812029111

[30]. Nardelli, M. J. Appl. Cryst. 1995, 28, 659-659.
https://doi.org/10.1107/S0021889895007138

[31]. Spek, A. L. Acta Cryst. D 2009, 65, 148-155.
https://doi.org/10.1107/S090744490804362X

[32]. Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
https://doi.org/10.1063/1.464913

[33]. Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100.
https://doi.org/10.1103/PhysRevA.38.3098

[34]. Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
https://doi.org/10.1103/PhysRevB.37.785

[35]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr. , J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; P. Hratchian, H.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; AlaLaham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. et al. , Gaussian 09, Revision A. 02, Gaussian, Inc. , Wallingford CT, 2009.

[36]. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. J. Appl. Cryst. 2008, 41, 466-470.
https://doi.org/10.1107/S0021889807067908

[37]. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc. Perk. T. 2 1987, 1-19.
https://doi.org/10.1039/p298700000s1

[38]. Manolov, I.; Morgenstern, B.; Hegetschweiler, K. X-ray Struct. Anal. Online 2012, 28, 83-84.
https://doi.org/10.2116/xraystruct.28.83

[39]. Dochev, S.; Roller, A.; Milunovic, M.; Manolov, I. X-ray Struct. Anal. Online 2017, 33, 53-54.
https://doi.org/10.2116/xraystruct.33.53

[40]. Politzer, P.; Truhlar, D. G. Chemical Applications of Atomic and Molecular Electrostatic Potentials, New York: Plenum Press, 1981.
https://doi.org/10.1007/978-1-4757-9634-6

[41]. Stewart, R. F. Chem. Phys. Lett. 1979, 65, 335-342.
https://doi.org/10.1016/0009-2614(79)87077-3

[42]. Murray, J. S.; Politzer, P. WIREs Comput. Mol. Sci. 2011, 1, 153-163.
https://doi.org/10.1002/wcms.19

[43]. Politzer, P.; Murray, J. S. Theoret. Chem. Accounts 2002, 108, 134-142.
https://doi.org/10.1007/s00214-002-0363-9

[44]. Joshi, B. D.; Mishra, R.; Tandon, P.; Oliveira, A. C.; Ayala, A. P. J. Mol. Struct. 2014, 1058, 31-40.
https://doi.org/10.1016/j.molstruc.2013.10.062

[45]. Munoz-Caro, C.; Nino, A.; Sement, M. L.; Leal, J. M.; Ibeas, S. J. Org. Chem. 2000, 65, 405-410.
https://doi.org/10.1021/jo991251x

[46]. Pearson, R. G. Proceed. Nat. Acad. Sci. USA 1986, 83, 8440-8841.

[47]. Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833-1840.
https://doi.org/10.1063/1.1740588

[48]. Choo, J.; Kim, S.; Joo, H.; Kwon, Y. J. Mol. Struct. 2002, 587, 1-8.
https://doi.org/10.1016/S0166-1280(02)00107-0

[49]. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899-926.
https://doi.org/10.1021/cr00088a005

[50]. Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989.

[51]. Ayers, P. W.; Parr, R. G. J. Am. Chem. Soc. 2000, 122, 2010-2018.
https://doi.org/10.1021/ja9924039

[52]. Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 511-516.
https://doi.org/10.1021/ja00326a036

[53]. Morell, C.; Grand, A.; Toro-Labbe, A. J. Phys. Chem. 2005, 109, 205-212.
https://doi.org/10.1021/jp046577a

Supporting Agencies

Rashtriya Uchchatar Shiksha Abhiyan (RUSA) 2.0 Project (Ref. No, RUSA/JU/2/2019-20/111/3588-3636), India.
Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).