

Synthesis, X-ray structure, and DFT analysis of a binary complex of 3,3'-[(3-benzimidazolyl)methylene]bis(4-hydroxy-2H-1-benzopyran-2-one): 5-Methyl-1,3-thiazol-2(3H)-imine
Gopal Sharma (1)








(1) X-ray Crystallography Laboratory, Department of Physics, University of Jammu, Jammu Tawi, 180006, India
(2) X-ray Crystallography Laboratory, Department of Physics, University of Jammu, Jammu Tawi, 180006, India
(3) X-ray Crystallography Laboratory, Department of Physics, University of Jammu, Jammu Tawi, 180006, India
(4) Department of Chemistry, Shivaji University, Kolhapur, 416004, India
(5) Department of Chemistry, Shivaji University, Kolhapur, 416004, India
(6) Department of Chemistry, Shivaji University, Kolhapur, 416004, India
(7) School of Pure and Applied Physics, Mahatma Gandhi University, Kerala, 686560, India
(8) X-ray Crystallography Laboratory, Department of Physics, University of Jammu, Jammu Tawi, 180006, India
(*) Corresponding Author
Received: 18 Aug 2020 | Revised: 16 Oct 2020 | Accepted: 22 Oct 2020 | Published: 31 Dec 2020 | Issue Date: December 2020
Abstract
A combined theoretical and experimental investigation on a pharmaceutically important binary complex 3,3'-[(3-benzimidazolyl)methylene]bis(4-hydroxy-2H-1-benzopyran-2-one): 5-methyl-1,3-thiazol-2(3H)-imine is presented in this manuscript. The compound crystallizes in the monoclinic crystal system with space group Cc with unit cell parameters: a = 19.8151(8) Å, b = 15.2804(6) Å, c = 8.3950(4) Å, β = 94.0990(10)°, V = 2535.36(19) Å3, Z = 4, T = 296(2) K, μ(MoKα) = 0.184 mm-1, Dcalc = 1.490 g/cm3, 35833 reflections measured (5.332° ≤ 2Θ ≤ 56.678°), 6168 unique (Rint = 0.0467, Rsigma = 0.0388) which were used in all calculations. The final R1 was 0.0435 (I > 2σ(I)) and wR2 was 0.1073 (all data). The crystal structure has been determined by the conventional X-ray diffraction method, solved by direct methods and refined by the full matrix least squares procedure. Intramolecular hydrogen bonding of the type C–H⋅⋅⋅O and O–H⋅⋅⋅O is present and the crystal structure stabilizes via N–H…O, C–H…N and O–H…N intermolecular interactions. The optimized structural parameters have been compared and the parameters like ionization potential, electron affinity, global hardness, electron chemical potential, electronegativity, and global electrophilicity based on HOMO and LUMO energy values were calculated at B3LYP/6-311G(d,p) level of theory for a better understanding of the structural properties of the binary complex.
Announcements
One of our sponsors will cover the article processing fee for all submissions made between May 17, 2023 and May 31, 2023 (Voucher code: SPONSOR2023).
Editor-in-Chief
European Journal of Chemistry
Keywords
Full Text:
PDF

DOI: 10.5155/eurjchem.11.4.324-333.2028
Links for Article
| | | | | | |
| | | | | | |
| | | |
Related Articles
Article Metrics


Funding information
Rashtriya Uchchatar Shiksha Abhiyan (RUSA) 2.0 Project (Ref. No: RUSA/JU/2/2019-20/111/3588-3636), India.
Citations
References
[1]. Kontogiorgis, C.; Detsi, A.; Hadjipavlou-Litina, D. Exp. Opin. Therap. Pat. 2012, 22, 437-454.
https://doi.org/10.1517/13543776.2012.678835
[2]. Kostova, I. Curr. Med. Chem. Anti-Cancer Agents 2005, 5, 29-46.
https://doi.org/10.2174/1568011053352550
[3]. Weinmann, I. Coumarins: Biology, Applications and Mode of Action, John Wiley & Sons, USA, 1997, pp. 1-22.
[4]. Saeed, A.; Ashraf, S.; Florke, U.; Delgado Espinoza, Z. Y.; Erben, M. F.; Perez, H. J. Mol. Struct. 2016, 1111, 76-83.
https://doi.org/10.1016/j.molstruc.2016.01.074
[5]. Wang, K.; Liu, Z.; Guan, R.; Cao, D.; Chen, H.; Shan, Y.; Wu, Q.; Xu, Y. Spectrochim. Acta A 2015, 144, 235-242.
https://doi.org/10.1016/j.saa.2015.02.072
[6]. Perez-Cruz, F.; Vazquez-Rodriguez, S.; Matos, M. J.; Herrera-Morales, A.; Villamena, F. A.; Das, A.; Gopalakrishnan, B.; Olea-Azar, C.; Santana, L.; Uriarte, E. J. Med. Chem. 2013, 56, 6136-6145.
https://doi.org/10.1021/jm400546y
[7]. Saeed, A.; Zaib, S.; Ashraf, S.; Iftikhar, J.; Muddassar, M.; Zhang, K. Y. J.; Iqbal, J. Bioorg. Chem. 2015, 63, 58-63.
https://doi.org/10.1016/j.bioorg.2015.09.009
[8]. Medina, F. G.; Marrero, J. G.; Macias-Alonso, M.; Gonzalez, M. C.; Cordova-Guerrero, I.; Teissier Garcia, A. G.; Osegueda-Robles, S. Nat. Prod. Rep. 2015, 32, 1472-1507.
https://doi.org/10.1039/C4NP00162A
[9]. Smyth, T.; Ramachandran, V. N.; Smyth, W. F. Int. J. Antimicrob. Agents 2009, 33, 421-426.
https://doi.org/10.1016/j.ijantimicag.2008.10.022
[10]. Manvar, A.; Malde, A.; Verma, J.; Virsodia, V.; Mishra, A.; Upadhyay, K.; Acharya, H.; Coutinho, E.; Shah, A. Eur. J. Med. Chem. 2008, 43, 2395-2403.
https://doi.org/10.1016/j.ejmech.2008.01.016
[11]. Belluti, F.; Fontana, G.; Dal Bo, L.; Carenini, N.; Giommarelli, C.; Zunino, F. Bioorg. Med. Chem. 2010, 18, 3543-3550.
https://doi.org/10.1016/j.bmc.2010.03.069
[12]. Yu, D.; Suzuki, M.; Xie, L.; Morris-Natschke, S. L.; Lee, K. H. Med. Res. Rev. 2003, 23, 322-345.
https://doi.org/10.1002/med.10034
[13]. Kalkhambkar, R. G.; Kulkarni, G. M.; Kamanavalli, C. M.; Premkumar, N.; Asdaq, S. M. B.; Sun, C. M. Eur. J. Med. Chem. 2008, 43, 2178-2188.
https://doi.org/10.1016/j.ejmech.2007.08.007
[14]. Keri, R. S.; Hosamani, K. M.; Shingalapur, R. V.; Hugar, M. H. Eur. J. Med. Chem. 2010, 45, 2597-2605.
https://doi.org/10.1016/j.ejmech.2010.02.048
[15]. Wood, W. J.; Patterson, A. W.; Tsuruoka, H.; Jain, R. K.; Ellman, J. A. J. Am. Chem. Soc. 2005, 127, 15521-15527.
https://doi.org/10.1021/ja0547230
[16]. Sashidhara, K. V.; Kumar, A.; Kumar, M.; Sarkar, J.; Sinha, S.; Bioorg. Med. Chem. Lett. 2010, 20, 7205-7211.
https://doi.org/10.1016/j.bmcl.2010.10.116
[17]. Radanyi, C.; Le Bras, G. l.; Messaoudi, S.; Bouclier, C. l.; Peyrat, J. F. o.; Brion, J. D.; Marsaud, V. r.; Renoir, J. M.; Alami, M. d.; Bioorg. Med. Chem. Lett. 2008, 18, 2495-2498.
https://doi.org/10.1016/j.bmcl.2008.01.128
[18]. Chimenti, F.; Secci, D.; Bolasco, A.; Chimenti, P.; Granese, A.; Befani, O.; Turini, P.; Alcaro, S.; Ortuso, F. Bioorg. Med. Chem. Lett. 2004, 14, 3697-3703.
https://doi.org/10.1016/j.bmcl.2004.05.010
[19]. Nolan, A. K.; Doncaster, R. J.; Dunstan, S. M.; Scot, A. K.; Frenkel, D.; Siegel, D.; Ross, D.; Barnes, J.; Levy, C.; Leys D. J. Med. Chem. 2009, 57, 7142-7156.
https://doi.org/10.1021/jm9011609
[20]. Mahajan, D. H.; Pannecouque, C.; De Clercq, E.; Chikhalia, K. H. Arch. Pharm. 2009, 342, 281-290.
https://doi.org/10.1002/ardp.200800149
[21]. Zhao, H.; Neamati, N.; Hong, H.; Mazumder, A.; Wang, S.; Sunder, S.; Milne, G. W. A.; Pommier, Y.; Burke, T. R. J. Med. Chem. 1997, 40, 242-249.
https://doi.org/10.1021/jm960450v
[22]. Saeed, A.; Arif, M.; Erben, M. F.; Florke, U.; Simpson, J. Spectrochim. Acta A 2018, 198, 290-296.
https://doi.org/10.1016/j.saa.2018.03.036
[23]. Luo, Y.; Yao, J.; Yang, L.; Feng, C.; Tang, W.; Wang, G.; Zuo, J.; Lu. W. Arch. Pharm. Chem. Life Sci. 2011, 2, 78-83.
https://doi.org/10.1002/ardp.201000167
[24]. Arjmand, F.; Aziz, M. Eur. J. Med. Chem. 2009, 44, 834-844.
https://doi.org/10.1016/j.ejmech.2008.05.006
[25]. Osman, H.; Arshad, A.; Lam, C. K.; Bagley, M. C. Chem. Cent. J. 2012, 6, 32-42.
https://doi.org/10.1186/1752-153X-6-32
[26]. Bruker (2009). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
[27]. Sheldrick, G. M. Acta Cryst. A 2008, 64, 112-122.
https://doi.org/10.1107/S0108767307043930
[28]. Sheldrick, G. M. Acta Cryst. C 2015, 71, 3-8.
https://doi.org/10.1107/S2053229614024218
[29]. Farrugia, L. J. J. Appl. Cryst 2012, 45, 849-854.
https://doi.org/10.1107/S0021889812029111
[30]. Nardelli, M. J. Appl. Cryst. 1995, 28, 659-659.
https://doi.org/10.1107/S0021889895007138
[31]. Spek, A. L. Acta Cryst. D 2009, 65, 148-155.
https://doi.org/10.1107/S090744490804362X
[32]. Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
https://doi.org/10.1063/1.464913
[33]. Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100.
https://doi.org/10.1103/PhysRevA.38.3098
[34]. Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
https://doi.org/10.1103/PhysRevB.37.785
[35]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr. , J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; P. Hratchian, H.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; AlaLaham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. et al. , Gaussian 09, Revision A. 02, Gaussian, Inc. , Wallingford CT, 2009.
[36]. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. J. Appl. Cryst. 2008, 41, 466-470.
https://doi.org/10.1107/S0021889807067908
[37]. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc. Perk. T. 2 1987, 1-19.
https://doi.org/10.1039/p298700000s1
[38]. Manolov, I.; Morgenstern, B.; Hegetschweiler, K. X-ray Struct. Anal. Online 2012, 28, 83-84.
https://doi.org/10.2116/xraystruct.28.83
[39]. Dochev, S.; Roller, A.; Milunovic, M.; Manolov, I. X-ray Struct. Anal. Online 2017, 33, 53-54.
https://doi.org/10.2116/xraystruct.33.53
[40]. Politzer, P.; Truhlar, D. G. Chemical Applications of Atomic and Molecular Electrostatic Potentials, New York: Plenum Press, 1981.
https://doi.org/10.1007/978-1-4757-9634-6
[41]. Stewart, R. F. Chem. Phys. Lett. 1979, 65, 335-342.
https://doi.org/10.1016/0009-2614(79)87077-3
[42]. Murray, J. S.; Politzer, P. WIREs Comput. Mol. Sci. 2011, 1, 153-163.
https://doi.org/10.1002/wcms.19
[43]. Politzer, P.; Murray, J. S. Theoret. Chem. Accounts 2002, 108, 134-142.
https://doi.org/10.1007/s00214-002-0363-9
[44]. Joshi, B. D.; Mishra, R.; Tandon, P.; Oliveira, A. C.; Ayala, A. P. J. Mol. Struct. 2014, 1058, 31-40.
https://doi.org/10.1016/j.molstruc.2013.10.062
[45]. Munoz-Caro, C.; Nino, A.; Sement, M. L.; Leal, J. M.; Ibeas, S. J. Org. Chem. 2000, 65, 405-410.
https://doi.org/10.1021/jo991251x
[46]. Pearson, R. G. Proceed. Nat. Acad. Sci. USA 1986, 83, 8440-8841.
[47]. Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833-1840.
https://doi.org/10.1063/1.1740588
[48]. Choo, J.; Kim, S.; Joo, H.; Kwon, Y. J. Mol. Struct. 2002, 587, 1-8.
https://doi.org/10.1016/S0166-1280(02)00107-0
[49]. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899-926.
https://doi.org/10.1021/cr00088a005
[50]. Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989.
[51]. Ayers, P. W.; Parr, R. G. J. Am. Chem. Soc. 2000, 122, 2010-2018.
https://doi.org/10.1021/ja9924039
[52]. Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 511-516.
https://doi.org/10.1021/ja00326a036
[53]. Morell, C.; Grand, A.; Toro-Labbe, A. J. Phys. Chem. 2005, 109, 205-212.
https://doi.org/10.1021/jp046577a
Supporting information
The Supplementary Material for this article can be found online at: Supplementary files
How to cite
The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item
DOI Link: https://doi.org/10.5155/eurjchem.11.4.324-333.2028

















European Journal of Chemistry 2020, 11(4), 324-333 | doi: https://doi.org/10.5155/eurjchem.11.4.324-333.2028 | Get rights and content
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Authors

This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).
© Copyright 2010 - 2023 • Atlanta Publishing House LLC • All Right Reserved.
The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.
Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.