European Journal of Chemistry 2020, 11(4), 324-333 | doi: https://doi.org/10.5155/eurjchem.11.4.324-333.2028 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Synthesis, X-ray structure, and DFT analysis of a binary complex of 3,3'-[(3-benzimidazolyl)methylene]bis(4-hydroxy-2H-1-benzopyran-2-one): 5-Methyl-1,3-thiazol-2(3H)-imine


Gopal Sharma (1) orcid , Anshul Uppal (2) orcid , Sumati Anthal (3) orcid , Madhukar Baburao Deshmukh (4) orcid , Priyanka Pandharinath Mohire (5) orcid , Tanaji Ramchandra Bhosale (6) orcid , Chellappanpillai Sudarsanakumar (7) orcid , Rajni Kant (8,*) orcid

(1) X-ray Crystallography Laboratory, Department of Physics, University of Jammu, Jammu Tawi, 180006, India
(2) X-ray Crystallography Laboratory, Department of Physics, University of Jammu, Jammu Tawi, 180006, India
(3) X-ray Crystallography Laboratory, Department of Physics, University of Jammu, Jammu Tawi, 180006, India
(4) Department of Chemistry, Shivaji University, Kolhapur, 416004, India
(5) Department of Chemistry, Shivaji University, Kolhapur, 416004, India
(6) Department of Chemistry, Shivaji University, Kolhapur, 416004, India
(7) School of Pure and Applied Physics, Mahatma Gandhi University, Kerala, 686560, India
(8) X-ray Crystallography Laboratory, Department of Physics, University of Jammu, Jammu Tawi, 180006, India
(*) Corresponding Author

Received: 18 Aug 2020 | Revised: 16 Oct 2020 | Accepted: 22 Oct 2020 | Published: 31 Dec 2020 | Issue Date: December 2020

Abstract


A combined theoretical and experimental investigation on a pharmaceutically important binary complex 3,3'-[(3-benzimidazolyl)methylene]bis(4-hydroxy-2H-1-benzopyran-2-one): 5-methyl-1,3-thiazol-2(3H)-imine is presented in this manuscript. The compound crystallizes in the monoclinic crystal system with space group Cc with unit cell parameters: a = 19.8151(8) Å, b = 15.2804(6) Å, c = 8.3950(4) Å, β = 94.0990(10)°, = 2535.36(19) Å3, Z = 4, T = 296(2) K, μ(MoKα) = 0.184 mm-1, Dcalc = 1.490 g/cm3, 35833 reflections measured (5.332° ≤ 2Θ ≤ 56.678°), 6168 unique (Rint = 0.0467, Rsigma = 0.0388) which were used in all calculations. The final R1 was 0.0435 (I > 2σ(I)) and wR2 was 0.1073 (all data). The crystal structure has been determined by the conventional X-ray diffraction method, solved by direct methods and refined by the full matrix least squares procedure. Intramolecular hydrogen bonding of the type C–H⋅⋅⋅O and O–H⋅⋅⋅O is present and the crystal structure stabilizes via N–H…O, C–H…N and O–H…N intermolecular interactions. The optimized structural parameters have been compared and the parameters like ionization potential, electron affinity, global hardness, electron chemical potential, electronegativity, and global electrophilicity based on HOMO and LUMO energy values were calculated at B3LYP/6-311G(d,p) level of theory for a better understanding of the structural properties of the binary complex.


Keywords


DFT; Direct methods; X-ray diffraction; Crystal structure; Benzopyran derivatives; Intermolecular interactions

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.11.4.324-333.2028

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 431 times | icon graph PDF Article downloaded 129 times

Funding information


Rashtriya Uchchatar Shiksha Abhiyan (RUSA) 2.0 Project (Ref. No: RUSA/JU/2/2019-20/111/3588-3636), India.

Citations

/


References


[1]. Kontogiorgis, C.; Detsi, A.; Hadjipavlou-Litina, D. Exp. Opin. Therap. Pat. 2012, 22, 437-454.
https://doi.org/10.1517/13543776.2012.678835

[2]. Kostova, I. Curr. Med. Chem. Anti-Cancer Agents 2005, 5, 29-46.
https://doi.org/10.2174/1568011053352550

[3]. Weinmann, I. Coumarins: Biology, Applications and Mode of Action, John Wiley & Sons, USA, 1997, pp. 1-22.

[4]. Saeed, A.; Ashraf, S.; Florke, U.; Delgado Espinoza, Z. Y.; Erben, M. F.; Perez, H. J. Mol. Struct. 2016, 1111, 76-83.
https://doi.org/10.1016/j.molstruc.2016.01.074

[5]. Wang, K.; Liu, Z.; Guan, R.; Cao, D.; Chen, H.; Shan, Y.; Wu, Q.; Xu, Y. Spectrochim. Acta A 2015, 144, 235-242.
https://doi.org/10.1016/j.saa.2015.02.072

[6]. Perez-Cruz, F.; Vazquez-Rodriguez, S.; Matos, M. J.; Herrera-Morales, A.; Villamena, F. A.; Das, A.; Gopalakrishnan, B.; Olea-Azar, C.; Santana, L.; Uriarte, E. J. Med. Chem. 2013, 56, 6136-6145.
https://doi.org/10.1021/jm400546y

[7]. Saeed, A.; Zaib, S.; Ashraf, S.; Iftikhar, J.; Muddassar, M.; Zhang, K. Y. J.; Iqbal, J. Bioorg. Chem. 2015, 63, 58-63.
https://doi.org/10.1016/j.bioorg.2015.09.009

[8]. Medina, F. G.; Marrero, J. G.; Macias-Alonso, M.; Gonzalez, M. C.; Cordova-Guerrero, I.; Teissier Garcia, A. G.; Osegueda-Robles, S. Nat. Prod. Rep. 2015, 32, 1472-1507.
https://doi.org/10.1039/C4NP00162A

[9]. Smyth, T.; Ramachandran, V. N.; Smyth, W. F. Int. J. Antimicrob. Agents 2009, 33, 421-426.
https://doi.org/10.1016/j.ijantimicag.2008.10.022

[10]. Manvar, A.; Malde, A.; Verma, J.; Virsodia, V.; Mishra, A.; Upadhyay, K.; Acharya, H.; Coutinho, E.; Shah, A. Eur. J. Med. Chem. 2008, 43, 2395-2403.
https://doi.org/10.1016/j.ejmech.2008.01.016

[11]. Belluti, F.; Fontana, G.; Dal Bo, L.; Carenini, N.; Giommarelli, C.; Zunino, F. Bioorg. Med. Chem. 2010, 18, 3543-3550.
https://doi.org/10.1016/j.bmc.2010.03.069

[12]. Yu, D.; Suzuki, M.; Xie, L.; Morris-Natschke, S. L.; Lee, K. H. Med. Res. Rev. 2003, 23, 322-345.
https://doi.org/10.1002/med.10034

[13]. Kalkhambkar, R. G.; Kulkarni, G. M.; Kamanavalli, C. M.; Premkumar, N.; Asdaq, S. M. B.; Sun, C. M. Eur. J. Med. Chem. 2008, 43, 2178-2188.
https://doi.org/10.1016/j.ejmech.2007.08.007

[14]. Keri, R. S.; Hosamani, K. M.; Shingalapur, R. V.; Hugar, M. H. Eur. J. Med. Chem. 2010, 45, 2597-2605.
https://doi.org/10.1016/j.ejmech.2010.02.048

[15]. Wood, W. J.; Patterson, A. W.; Tsuruoka, H.; Jain, R. K.; Ellman, J. A. J. Am. Chem. Soc. 2005, 127, 15521-15527.
https://doi.org/10.1021/ja0547230

[16]. Sashidhara, K. V.; Kumar, A.; Kumar, M.; Sarkar, J.; Sinha, S.; Bioorg. Med. Chem. Lett. 2010, 20, 7205-7211.
https://doi.org/10.1016/j.bmcl.2010.10.116

[17]. Radanyi, C.; Le Bras, G. l.; Messaoudi, S.; Bouclier, C. l.; Peyrat, J. F. o.; Brion, J. D.; Marsaud, V. r.; Renoir, J. M.; Alami, M. d.; Bioorg. Med. Chem. Lett. 2008, 18, 2495-2498.
https://doi.org/10.1016/j.bmcl.2008.01.128

[18]. Chimenti, F.; Secci, D.; Bolasco, A.; Chimenti, P.; Granese, A.; Befani, O.; Turini, P.; Alcaro, S.; Ortuso, F. Bioorg. Med. Chem. Lett. 2004, 14, 3697-3703.
https://doi.org/10.1016/j.bmcl.2004.05.010

[19]. Nolan, A. K.; Doncaster, R. J.; Dunstan, S. M.; Scot, A. K.; Frenkel, D.; Siegel, D.; Ross, D.; Barnes, J.; Levy, C.; Leys D. J. Med. Chem. 2009, 57, 7142-7156.
https://doi.org/10.1021/jm9011609

[20]. Mahajan, D. H.; Pannecouque, C.; De Clercq, E.; Chikhalia, K. H. Arch. Pharm. 2009, 342, 281-290.
https://doi.org/10.1002/ardp.200800149

[21]. Zhao, H.; Neamati, N.; Hong, H.; Mazumder, A.; Wang, S.; Sunder, S.; Milne, G. W. A.; Pommier, Y.; Burke, T. R. J. Med. Chem. 1997, 40, 242-249.
https://doi.org/10.1021/jm960450v

[22]. Saeed, A.; Arif, M.; Erben, M. F.; Florke, U.; Simpson, J. Spectrochim. Acta A 2018, 198, 290-296.
https://doi.org/10.1016/j.saa.2018.03.036

[23]. Luo, Y.; Yao, J.; Yang, L.; Feng, C.; Tang, W.; Wang, G.; Zuo, J.; Lu. W. Arch. Pharm. Chem. Life Sci. 2011, 2, 78-83.
https://doi.org/10.1002/ardp.201000167

[24]. Arjmand, F.; Aziz, M. Eur. J. Med. Chem. 2009, 44, 834-844.
https://doi.org/10.1016/j.ejmech.2008.05.006

[25]. Osman, H.; Arshad, A.; Lam, C. K.; Bagley, M. C. Chem. Cent. J. 2012, 6, 32-42.
https://doi.org/10.1186/1752-153X-6-32

[26]. Bruker (2009). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

[27]. Sheldrick, G. M. Acta Cryst. A 2008, 64, 112-122.
https://doi.org/10.1107/S0108767307043930

[28]. Sheldrick, G. M. Acta Cryst. C 2015, 71, 3-8.
https://doi.org/10.1107/S2053229614024218

[29]. Farrugia, L. J. J. Appl. Cryst 2012, 45, 849-854.
https://doi.org/10.1107/S0021889812029111

[30]. Nardelli, M. J. Appl. Cryst. 1995, 28, 659-659.
https://doi.org/10.1107/S0021889895007138

[31]. Spek, A. L. Acta Cryst. D 2009, 65, 148-155.
https://doi.org/10.1107/S090744490804362X

[32]. Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
https://doi.org/10.1063/1.464913

[33]. Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100.
https://doi.org/10.1103/PhysRevA.38.3098

[34]. Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
https://doi.org/10.1103/PhysRevB.37.785

[35]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr. , J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; P. Hratchian, H.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; AlaLaham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. et al. , Gaussian 09, Revision A. 02, Gaussian, Inc. , Wallingford CT, 2009.

[36]. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. J. Appl. Cryst. 2008, 41, 466-470.
https://doi.org/10.1107/S0021889807067908

[37]. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc. Perk. T. 2 1987, 1-19.
https://doi.org/10.1039/p298700000s1

[38]. Manolov, I.; Morgenstern, B.; Hegetschweiler, K. X-ray Struct. Anal. Online 2012, 28, 83-84.
https://doi.org/10.2116/xraystruct.28.83

[39]. Dochev, S.; Roller, A.; Milunovic, M.; Manolov, I. X-ray Struct. Anal. Online 2017, 33, 53-54.
https://doi.org/10.2116/xraystruct.33.53

[40]. Politzer, P.; Truhlar, D. G. Chemical Applications of Atomic and Molecular Electrostatic Potentials, New York: Plenum Press, 1981.
https://doi.org/10.1007/978-1-4757-9634-6

[41]. Stewart, R. F. Chem. Phys. Lett. 1979, 65, 335-342.
https://doi.org/10.1016/0009-2614(79)87077-3

[42]. Murray, J. S.; Politzer, P. WIREs Comput. Mol. Sci. 2011, 1, 153-163.
https://doi.org/10.1002/wcms.19

[43]. Politzer, P.; Murray, J. S. Theoret. Chem. Accounts 2002, 108, 134-142.
https://doi.org/10.1007/s00214-002-0363-9

[44]. Joshi, B. D.; Mishra, R.; Tandon, P.; Oliveira, A. C.; Ayala, A. P. J. Mol. Struct. 2014, 1058, 31-40.
https://doi.org/10.1016/j.molstruc.2013.10.062

[45]. Munoz-Caro, C.; Nino, A.; Sement, M. L.; Leal, J. M.; Ibeas, S. J. Org. Chem. 2000, 65, 405-410.
https://doi.org/10.1021/jo991251x

[46]. Pearson, R. G. Proceed. Nat. Acad. Sci. USA 1986, 83, 8440-8841.

[47]. Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833-1840.
https://doi.org/10.1063/1.1740588

[48]. Choo, J.; Kim, S.; Joo, H.; Kwon, Y. J. Mol. Struct. 2002, 587, 1-8.
https://doi.org/10.1016/S0166-1280(02)00107-0

[49]. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899-926.
https://doi.org/10.1021/cr00088a005

[50]. Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989.

[51]. Ayers, P. W.; Parr, R. G. J. Am. Chem. Soc. 2000, 122, 2010-2018.
https://doi.org/10.1021/ja9924039

[52]. Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 511-516.
https://doi.org/10.1021/ja00326a036

[53]. Morell, C.; Grand, A.; Toro-Labbe, A. J. Phys. Chem. 2005, 109, 205-212.
https://doi.org/10.1021/jp046577a


Supporting information


The Supplementary Material for this article can be found online at: Supplementary files

How to cite


Sharma, G.; Uppal, A.; Anthal, S.; Deshmukh, M.; Mohire, P.; Bhosale, T.; Sudarsanakumar, C.; Kant, R. Eur. J. Chem. 2020, 11(4), 324-333. doi:10.5155/eurjchem.11.4.324-333.2028
Sharma, G.; Uppal, A.; Anthal, S.; Deshmukh, M.; Mohire, P.; Bhosale, T.; Sudarsanakumar, C.; Kant, R. Synthesis, X-ray structure, and DFT analysis of a binary complex of 3,3'-[(3-benzimidazolyl)methylene]bis(4-hydroxy-2H-1-benzopyran-2-one): 5-Methyl-1,3-thiazol-2(3H)-imine. Eur. J. Chem. 2020, 11(4), 324-333. doi:10.5155/eurjchem.11.4.324-333.2028
Sharma, G., Uppal, A., Anthal, S., Deshmukh, M., Mohire, P., Bhosale, T., Sudarsanakumar, C., & Kant, R. (2020). Synthesis, X-ray structure, and DFT analysis of a binary complex of 3,3'-[(3-benzimidazolyl)methylene]bis(4-hydroxy-2H-1-benzopyran-2-one): 5-Methyl-1,3-thiazol-2(3H)-imine. European Journal of Chemistry, 11(4), 324-333. doi:10.5155/eurjchem.11.4.324-333.2028
Sharma, Gopal, Anshul Uppal, Sumati Anthal, Madhukar Baburao Deshmukh, Priyanka Pandharinath Mohire, Tanaji Ramchandra Bhosale, Chellappanpillai Sudarsanakumar, & Rajni Kant. "Synthesis, X-ray structure, and DFT analysis of a binary complex of 3,3'-[(3-benzimidazolyl)methylene]bis(4-hydroxy-2H-1-benzopyran-2-one): 5-Methyl-1,3-thiazol-2(3H)-imine." European Journal of Chemistry [Online], 11.4 (2020): 324-333. Web. 26 Oct. 2021
Sharma, Gopal, Uppal, Anshul, Anthal, Sumati, Deshmukh, Madhukar, Mohire, Priyanka, Bhosale, Tanaji, Sudarsanakumar, Chellappanpillai, AND Kant, Rajni. "Synthesis, X-ray structure, and DFT analysis of a binary complex of 3,3'-[(3-benzimidazolyl)methylene]bis(4-hydroxy-2H-1-benzopyran-2-one): 5-Methyl-1,3-thiazol-2(3H)-imine" European Journal of Chemistry [Online], Volume 11 Number 4 (31 December 2020)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.11.4.324-333.2028

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2020, 11(4), 324-333 | doi: https://doi.org/10.5155/eurjchem.11.4.324-333.2028 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2021  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2021 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.