European Journal of Chemistry

Synthesis of bis-azobenzene derivatives with reactive bromohexyl unit and carboxylic acid group based on Disperse Yellow 7

Crossmark


Main Article Content

Alina Madalina Darabut
Olha Hennadiivna Purikova
Yevheniia Volodymyrivna Lobko

Abstract

In this work, two types of azobenzene derivatives based on Disperse Yellow 7 (DY7, 4-[4-(phenylazo)phenylazo]-o-cresol) were synthesized, which are bis-azobenzenes bearing flexible functional 6-bromohexyl chain or carboxylic acid moiety. The first one was synthesized by alkylation of DY7 with an excess of 1,6-dibromohexane in the presence of a mild base (K2CO3). The second one (azo dye with carboxylic acid functionality) was obtained by the alkaline hydrolysis of the ester bond of the newly obtained DY7 derivative with the ethoxycarbonyl group. The synthesized compounds were characterized by different spectral analytical techniques such as 1H NMR, 13C NMR, FT-IR, and UV-Vis. They can be employed for the synthesis of a wide variety of azo-based materials, which may be suitable for photochromic systems and molecular electronics applications.


icon graph This Abstract was viewed 1007 times | icon graph Article PDF downloaded 564 times

How to Cite
(1)
Darabut, A. M.; Purikova, O. H.; Lobko, Y. V. Synthesis of Bis-Azobenzene Derivatives With Reactive Bromohexyl Unit and Carboxylic Acid Group Based on Disperse Yellow 7. Eur. J. Chem. 2020, 11, 298-303.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Merino, E. Chem. Soc. Rev. 2011, 40, 3835-3853.
https://doi.org/10.1039/c0cs00183j

[2]. Beharry, A. A.; Woolley, G. A. Chem. Soc. Rev. 2011, 40, 4422-4437.
https://doi.org/10.1039/c1cs15023e

[3]. Fihey, A.; Perrier, A.; Browne, W. R.; Jacquemin, D. Chem. Soc. Rev. 2015, 44, 3719-3759.
https://doi.org/10.1039/C5CS00137D

[4]. Lu, X.; Guo, S.; Tong, X.; Xia, H.; Zhao, Y. Adv. Mater. 2017, 29, 1606467.
https://doi.org/10.1002/adma.201606467

[5]. Imen, H.; Xiaonan, S.; Denis, F.; Frederic, L.; Jean-Christophe, L. Nanoscale 2019, 11, 23042-23048.
https://doi.org/10.1039/C9NR06350A

[6]. Bandara, H. D.; Burdette, S. C. Chem. Soc. Rev. 2012, 41, 1809-1825.
https://doi.org/10.1039/C1CS15179G

[7]. Sin, S. L.; Gan, L. H.; Hu, X.; Tam, K. C.; Gan, Y. Y. Macromolecules 2005, 38, 3943-3948.
https://doi.org/10.1021/ma050097f

[8]. Mahimwalla, Z.; Yager, K. G.; Mamiya, J. I.; Shishido, A.; Priimagi, A.; Barrett, C. J. Polym. Bull. 2012, 69, 967-1006.
https://doi.org/10.1007/s00289-012-0792-0

[9]. Barrett, C. J.; Mamiya, J. I.; Yager, K. G.; Ikeda, T. Soft Matter. 2007, 3, 1249-1261.
https://doi.org/10.1039/b705619b

[10]. Ferri, V.; Elbing, M.; Pace, G.; Dickey, M. D.; Zharnikov, M.; Samorì, P.; Mayor, M.; Rampi, M. A. Angew. Chem. Int Edit. 2008, 47, 3407-3409.
https://doi.org/10.1002/anie.200705339

[11]. Oscurato, S. L.; Salvatore, M.; Maddalena, P.; Ambrosio, A. Nanophotonics-Berlin 2018, 7, 1387-1422.
https://doi.org/10.1515/nanoph-2018-0040

[12]. Sun, S.; Liang, S.; Xu, W. C.; Xu, G.; Wu, S. Polym. Chem. UK 2019, 10, 4389-4401.
https://doi.org/10.1039/C9PY00793H

[13]. Cisnetti, F.; Ballardini, R.; Credi, A.; Gandolfi, M. T.; Masiero, S.; Negri, F.; Pieraccini, S.; Spada, G. P. Chem. Eur. J. 2004, 10, 2011-2021.
https://doi.org/10.1002/chem.200305590

[14]. Homocianu, M.; Serbezeanu, D.; Carja, I. D.; Macsim, A. M.; Vlad-Bubulac, T.; Airinei, A. RSC Adv. 2016, 6, 49980-49987.
https://doi.org/10.1039/C6RA07803F

[15]. Sheng, C.; Norwood, R. A.; Wang, J.; Thomas, J.; Wu, Y.; Zheng, Z.; Tabirian, N.; Steeves, D. M.; Kimball, B. R.; Peyghambarian, N. Appl. Optics 2008, 47, 5074-5077.
https://doi.org/10.1364/AO.47.005074

[16]. Vapaavuori, J.; Bazuin, C. G.; Priimagi, A. J. Mater. Chem. C 2018, 6, 2168-2188.
https://doi.org/10.1039/C7TC05005D

[17]. Barrio, J.; Sanchez-Somolinos, C. Adv. Opt. Mater. 2019, 7, 1900598.
https://doi.org/10.1002/adom.201900598

[18]. Dudziec, B.; Zak, P.; Marciniec, B. Polymers-Basel 2019, 11, 504.
https://doi.org/10.3390/polym11030504

[19]. Vapaavuori, J.; Goulet-Hanssens, A.; Heikkinen, I. T.; Barrett, C. J.; Priimagi, A. Chem. Mater. 2014, 26, 5089-5096.
https://doi.org/10.1021/cm5023129

[20]. Koskela, J. E.; Vapaavuori, J.; Hautala, J.; Priimagi, A.; Faul, C. F.; Kaivola, M.; Ras, R. H. J. Phys. Chem. C 2012, 116, 2363-2370.
https://doi.org/10.1021/jp210706n

[21]. Slavov, C.; Yang, C.; Schweighauser, L.; Boumrifak, C.; Dreuw, A.; Wegner, H. A.; Wachtveitl, J. Phys. Chem. Chem. Phys. 2016, 18, 14795-14804.
https://doi.org/10.1039/C6CP00603E

[22]. Salisu, A. A.; Ab Rahman, M. Z.; Silong, S.; Lutfor, M. R.; Ahmad, M. B. Liq. Cryst. 2011, 38, 423-431.
https://doi.org/10.1080/02678292.2010.550141

[23]. Samanta, S.; Woolley, G. A. ChemBioChem 2011, 12, 1712-1723.
https://doi.org/10.1002/cbic.201100204

[24]. Zhang, Y.; Pei, S.; Wang, Y.; Cui, Z.; Li, N.; Zhu, Y.; Zhang, H.; Jiang, Z. Dyes Pigments 2013, 99, 1117-1123.
https://doi.org/10.1016/j.dyepig.2013.08.004

[25]. Tkachenko, I. M.; Kobzar, Ya. L.; Purikova, O. G.; Tolstov, A. L.; Shekera, O. V.; Shevchenko, V. V. Tetrahedron Lett. 2016, 57, 5505-5510.
https://doi.org/10.1016/j.tetlet.2016.10.101

[26]. Galanti, A.; Santoro, J.; Mannancherry, R.; Duez, Q.; Diez-Cabanes, V.; Valassek, M.; De Winter, J.; Cornil, J.; Gerbaux, P.; Mayor, M.; Samori, P. J. Am. Chem. Soc. 2019, 141, 9273-9283.
https://doi.org/10.1021/jacs.9b02544

[27]. Tecilla, P.; Bonifazi, D. ChemistryOpen 2020, 9, 5291.
https://doi.org/10.1002/open.202000045

[28]. Baek, J. B.; Chien, L. C. J. Polym. Sci. Polym. Chem. 2004, 42, 3587-3603.
https://doi.org/10.1002/pola.20163

[29]. Wal, S.; Kuil, J.; Valentijn, A. R. P. M.; Leeuwen, F. W. B. Dyes Pigments 2016, 132, 7-19.
https://doi.org/10.1016/j.dyepig.2016.03.054

[30]. Tkachenko, I. M.; Belov, N. A.; Kobzar, Ya. L.; Dorokhin, A. V.; Shekera, O. V.; Shantarovich, V. P.; Bekeshev V. G.; Shevchenko, V. V. J. Fluorine Chem. 2017, 195, 1-12.
https://doi.org/10.1016/j.jfluchem.2017.01.008

[31]. Yazici, A.; Dalbul, N.; Salih, B. J. Chem. Soc. Pakistan 2014, 36, 707-711.

[32]. Abdulla, H. A.; Minor, E. C.; Dias, R. F.; Hatcher, P. G. Geochim. Cosmochim. Acta 2010, 74, 3815-3838.
https://doi.org/10.1016/j.gca.2010.04.006

[33]. Ledin, P. A.; Tkachenko, I. M.; Xu, W.; Choi, I.; Shevchenko, V. V.; Tsukruk, V. V. Langmuir 2014, 30, 8856-8865.
https://doi.org/10.1021/la501930e

Supporting Agencies

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).