European Journal of Chemistry 2020, 11(4), 351-363 | doi: https://doi.org/10.5155/eurjchem.11.4.351-363.2043 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Mitigate the cytokine storm due to the severe COVID-19: A computational investigation of possible allosteric inhibitory actions on IL-6R and IL-1R using selected phytochemicals


Harindu Rajapaksha (1,*) orcid , Bingun Tharusha Perera (2) orcid , Jeewani Meepage (3) orcid , Ruwan Tharanga Perera (4) orcid , Chithramala Dissanayake (5) orcid

(1) Department of Chemistry, Faculty of Science, University of Kelaniya, Dalugama, 11 300, Sri Lanka
(2) Department of Chemistry, Faculty of Science, University of Kelaniya, Dalugama, 11 300, Sri Lanka
(3) Department of Chemistry, Faculty of Science, University of Kelaniya, Dalugama, 11 300, Sri Lanka
(4) Graduate Studies Division, Gampaha Wickramarachchi Ayurveda Institute, University of Kelaniya, Yakkala, 11870, Sri Lanka
(5) Department of Cikitsa, Gampaha Wickramarachchi Ayurveda Institute, University of Kelaniya, Yakkala, 11870, Sri Lanka
(*) Corresponding Author

Received: 20 Sep 2020 | Revised: 09 Nov 2020 | Accepted: 12 Nov 2020 | Published: 31 Dec 2020 | Issue Date: December 2020

Abstract


The novel corona virus 2019 (COVID 19) is growing at an increasing rate with high mortality. Meanwhile, the cytokine storm is the most dangerous and potentially life-threatening event related to COVID 19. Phyto-compounds found in existing Ayurveda drugs have the ability to inhibit the Interleukin 6 (IL-6R) and Interleukin 1 (IL-1R) receptors. IL-6R and IL-1R receptors involve in cytokine storm and recognition of phytochemicals with proven safety profiles could open a pathway to the development of the most effective drugs against cytokine storm. In this study, we intend to perform an in silico investigation of effective phyto compounds, which can be isolated from selected medicinal herbs to avoid cytokine storm, inhibiting the IL-6 and IL-1 receptor binding process. An extensive literature survey followed by virtual screening was carried out to identify phytochemicals with potential anti-hyper-inflammatory action. Flexible docking was conducted for validated models of IL-1R and IL-6R-α with the most promising phytochemicals at possible allosteric sites using AutoDock Vina. Molecular dynamics (MD) studies were conducted for selected protein-ligand complexes using LARMD server and conformational changes were evaluated. According to the results, taepeenin J had Gibbs energy (ΔG) of -10.85 kcal/mol towards IL-1R but had limited oral bioavailability. MD analysis revealed that taepeenin J can cause significant conformational movements in IL-1R. Nortaepeenin B showed a ΔG of -8.5 kcal/mol towards IL-6R-α with an excellent oral bioavailability. MD analysis predicted that it can cause significant conformational movements in IL-6R-α. Hence, the evaluated phytochemicals are potential candidates for further in vitro studies for the development of medicine against cytokine storm on behalf of SARS-COV-2 infected patients.


Keywords


COVID-19; Immunology; Cytokine storm; Receptor blocking; Molecular dynamics; Computational chemistry

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.11.4.351-363.2043

Links for Article


| | | | | | |

| | | | | | |

| | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 57 times | icon graph PDF Article downloaded 9 times


References


[1]. Wu, F.; Zhao, S.; Yu, B.; Chen, Y. M.; Wang, W.; Song, Z. G.; Hu, Y.; Tao, Z. W.; Tian, J. H.; Pei, Y. Y.; Yuan, M. L.; Zhang, Y. L.; Dai, F. H.; Liu, Y.; Wang, Q. M.; Zheng, J. J.; Xu, L.; Holmes, E. C.; Zhang, Y. Z. Nature 2020, 579(7798), 265-269.
https://doi.org/10.1038/s41586-020-2008-3

[2]. Chan, J. F. W.; Kok, K. H.; Zhu, Z.; Chu, H.; To, K. K. W.; Yuan, S.; Yuen, K. Y. Emerg. Microbes. Infect. 2020, 9(1), 221-236.
https://doi.org/10.1080/22221751.2020.1719902

[3]. Culp, W. C., Jr. A & A Practice 2020, 14(6), e01218.
https://doi.org/10.1213/XAA.0000000000001218

[4]. Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Lancet 2020, 395(10223), 497-506.
https://doi.org/10.1016/S0140-6736(20)30183-5

[5]. de Wit, E.; van Doremalen, N.; Falzarano, D.; Munster, V. J. Nat. Rev. Microbiol. 2016, 14(8), 523-534.
https://doi.org/10.1038/nrmicro.2016.81

[6]. Zhou, P.; Yang, X. L.; Wang, X. G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H. R.; Zhu, Y.; Li, B.; Huang, C. L.; Chen, H. D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R. D.; Liu, M. Q.; Chen, Y.; Shen, X. R.; Wang, X.; Zheng, X. S.; Zhao, K.; Chen, Q. J.; Deng, F.; Liu, L. L.; Yan, B.; Zhan, F. X.; Wang, Y. Y.; Xiao, G. F.; Shi, Z. L. Nature 2020, 579(7798), 270-273.
https://doi.org/10.1038/s41586-020-2012-7

[7]. Hirano, T.; Murakami, M. Immunity 2020, 52(5), 731-733.
https://doi.org/10.1016/j.immuni.2020.04.003

[8]. Tanaka, T.; Narazaki, M.; Kishimoto, T. Immunotherapy 2016, 8(8), 959-970.
https://doi.org/10.2217/imt-2016-0020

[9]. Heinrich, P. C.; Behrmann, I.; Haan, S.; Hermanns, H. M.; Müller-Newen, G.; Schaper, F. Biochem. J. 2003, 374(1), 1-20.
https://doi.org/10.1042/bj20030407

[10]. Rajapaksa, R. M. H.; Perera, B. T.; Nisansala, M. J.; Perera, W. P. R. T.; Dissanayake, K. G. C. Global J. Eng. Sci. Res. Manag. 2020, 7, 51-61.

[11]. Radbel, J.; Narayanan, N.; Bhatt, P. J. Chest 2020, 158(1), e15-e19.
https://doi.org/10.1016/j.chest.2020.04.024

[12]. Varghese, J. N.; Moritz, R. L.; Lou, M.-Z.; van Donkelaar, A.; Ji, H.; Ivancic, N.; Branson, K. M.; Hall, N. E.; Simpson, R. J. Proceed. National Acad. Sci. 2002, 99(25), 15959-15964.
https://doi.org/10.1073/pnas.232432399

[13]. Ward, L. D.; Howlett, G. J.; Discolo, G.; Yasukawa, K.; Hammacher, A.; Moritz, R. L.; Simpson, R. J. J. Biol. Chem. 1994, 269, 23286-23289.

[14]. Scheller, J.; Chalaris, A.; Schmidt-Arras, D.; Rose-John, S. Biochim. Biophys. Acta (BBA) - Mol. Cell Res. 2011, 1813(5), 878-888.
https://doi.org/10.1016/j.bbamcr.2011.01.034

[15]. McGonagle, D.; Sharif, K.; O'Regan, A.; Bridgewood, C. Autoimmunity Rev. 2020, 19(6), 102537.
https://doi.org/10.1016/j.autrev.2020.102537

[16]. Zhang, C.; Wu, Z.; Li, J. W.; Zhao, H.; Wang, G. Q. Int. J. Antimicrob. Agent. 2020, 55(5), 105954.
https://doi.org/10.1016/j.ijantimicag.2020.105954

[17]. Lima de Oliveira, M. D.; Teixeira de Oliveira, K. M. ChemRxiv 2020, Retrieved Oct 10, 2020, https://doi.org/10.26434/chemrxiv.12044538.v4
https://doi.org/10.26434/chemrxiv.12044538.v4

[18]. Guo, C.; Li, B.; Ma, H.; Wang, X.; Cai, P.; Yu, Q.; Zhu, L.; Jin, L.; Jiang, C.; Fang, J.; Liu, Q.; Zong, D.; Zhang, W.; Lu, Y.; Li, K.; Gao, X.; Fu, B.; Liu, L.; Ma, X.; Weng, J.; Wei, H.; Jin, T.; Lin, J.; Qu, K. Nat. Commun. 2020, 11(1), https://doi.org/10.1038/s41467-020-17834-w
https://doi.org/10.1038/s41467-020-17834-w

[19]. Wang, J.; Qiao, C.; Xiao, H.; Lin, Z.; Li, Y.; Zhang, J.; Shen, B.; Fu, T.; Feng, J. Drug Des. Devel. Ther. 2016, 10, 4091-4100.
https://doi.org/10.2147/DDDT.S118457

[20]. Monteleone, G.; Sarzi-Puttini, P. C.; Ardizzone, S. Lancet Rheumatol. 2020, 2(5), e255-e256.
https://doi.org/10.1016/S2665-9913(20)30092-8

[21]. Liu, B.; Li, M.; Zhou, Z.; Guan, X.; Xiang, Y. J. Autoimmunity 2020, 111, 102452.
https://doi.org/10.1016/j.jaut.2020.102452

[22]. AbdelMassih, A. F.; Ramzy, D.; Nathan, L.; Aziz, S.; Ashraf, M.; Youssef, N. H.; Hafez, N.; Saeed, R.; Agha, H. Cardiovasc. Endocrinol. Metabol. 2020, 9(3), 121-124.
https://doi.org/10.1097/XCE.0000000000000207

[23]. Velavan, T. P.; Meyer, C. G. Trop. Med. Int. Health 2020, 25(3), 278-280.
https://doi.org/10.1111/tmi.13383

[24]. Kumar, N.; Awasthi, A.; Kumari, A.; Sood, D.; Jain, P.; Singh, T.; Sharma, N.; Grover, A.; Chandra, R. J. Biomol. Struc. Dynam. 2020, 1-16.
https://doi.org/10.1080/07391102.2020.1808072

[25]. Kumar, N.; Sood, D.; van der Spek, P. J.; Sharma, H. S.; Chandra, R. J. Proteome Res. 2020, 19(11), 4678-4689.
https://doi.org/10.1021/acs.jproteome.0c00367

[26]. Kumar, N.; Sood, D.; Chandra, R. RSC Adv. 2020, 10(59), 35856-35872.
https://doi.org/10.1039/D0RA06849G

[27]. Kumar, N.; Sood, D.; Tomar, R.; Chandra, R. ACS Omega 2019, 4(25), 21370-21380.
https://doi.org/10.1021/acsomega.9b03035

[28]. Kumar, N.; Sood, D.; Chandra, R. ACS Pharmacol. Transl. Sci. 2020. https://doi.org/10.1021/acsptsci.0c00139.
https://doi.org/10.1021/acsptsci.0c00139

[29]. Dissanayake, K.G.C.; Perera, W. P. R. T. Res. J. Med. Plant 2020, 8(2), 135-139.

[30]. Dissanayake, L.; Perera, P.; Attanayaka, T.; Heberle, E.; Jayawardhana, M. Plants 2020, 9(10), 1315.
https://doi.org/10.3390/plants9101315

[31]. PubMed, U. S. National Library of Medicine, Retrieved Oct 10, 2020, from https://pubchem.ncbi.nlm.nih.gov

[32]. Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P. W.; Tang, Y. J. Chem. Inf. Model. 2012, 52(11), 3099-3105.
https://doi.org/10.1021/ci300367a

[33]. Berman, H. M. Nucleic Acids Res. 2000, 28(1), 235-242.
https://doi.org/10.1093/nar/28.1.235

[34]. Basic Local Alignment Search Tool, National Center for Biotechnology Information, U. S. National Library of Medicine, Retrieved Oct 10, 2020, from https://blast.ncbi.nlm.nih.gov/Blast.cgi

[35]. Eswar, N.; Webb, B.; Marti-Renom, M. A.; Madhusudhan, M. S.; Eramian, D.; Shen, M.; Pieper, U.; Sali, A. Curr. Protoc. Bioinform. 2006, 15(1), 5.6.1-5.6.30.
https://doi.org/10.1002/0471250953.bi0506s15

[36]. Kuntal, B. K.; Aparoy, P.; Reddanna, P. BMC Res Notes 2010, 3(1), 226.
https://doi.org/10.1186/1756-0500-3-226

[37]. Shen, M.; Sali, A. Protein Sci. 2006, 15(11), 2507-2524.
https://doi.org/10.1110/ps.062416606

[38]. Shuid, A. N.; Kempster, R.; McGuffin, L. J. Nucleic Acids Res. 2017, 45(W1), W422-W428.
https://doi.org/10.1093/nar/gkx249

[39]. Eisenberg, D.; Lüthy, R.; Bowie, J. U. Meth. Enzymol. 1997, 277, 396-404.
https://doi.org/10.1016/S0076-6879(97)77022-8

[40]. Colovos, C.; Yeates, T. O. Protein Sci. 1993, 2(9), 1511-1519.
https://doi.org/10.1002/pro.5560020916

[41]. Laskowski, R. A.; MacArthur, M. W.; Moss, D. S.; Thornton, J. M. J. Appl. Cryst. 1993, 26(2), 283-291.
https://doi.org/10.1107/S0021889892009944

[42]. Torrisi, M.; Kaleel, M.; Pollastri, G. BioRxiv 2018, 289033.

[43]. Sippl, M. J. Proteins 1993, 17(4), 355-362.
https://doi.org/10.1002/prot.340170404

[44]. Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. Nucleic Acids Res. 2018, 46(W1), W363-W367.
https://doi.org/10.1093/nar/gky473

[45]. Halgren, T. A. J. Comput. Chem. 1996, 17 (5-6), 490-519.
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P

[46]. Gordon, M. S.; Schmidt, M. W. Advances in Electronic Structure Theory. In Theory and Applications of Computational Chemistry; Elsevier, 2005; pp 1167-1189.
https://doi.org/10.1016/B978-044451719-7/50084-6

[47]. Yang, J. F.; Wang, F.; Chen, Y. Z.; Hao, G. F.; Yang, G. F. Brief. Bioinformatics 2019, bbz141, https://doi.org/10.1093/bib/bbz141.
https://doi.org/10.1093/bib/bbz141

[48]. Marques, P. R. B. de O.; Yamanaka, H. Quim. Nova 2008, 31(7), 1791-1799.
https://doi.org/10.1590/S0100-40422008000700034

[49]. Plewczynski, D.; Lazniewski, M.; Augustyniak, R.; Ginalski, K. J. Comput. Chem. 2010, 32(4), 742-755.
https://doi.org/10.1002/jcc.21643

[50]. Wenthur, C. J.; Gentry, P. R.; Mathews, T. P.; Lindsley, C. W. Annu. Rev. Pharmacol. Toxicol. 2014, 54(1), 165-184.
https://doi.org/10.1146/annurev-pharmtox-010611-134525

[51]. Wold, E. A.; Chen, J.; Cunningham, K. A.; Zhou, J. J. Med. Chem. 2018, 62(1), 88-127.
https://doi.org/10.1021/acs.jmedchem.8b00875

[52]. Yang, C. Y. PLoS ONE 2015, 10(2), e0118671.
https://doi.org/10.1371/journal.pone.0118671

[53]. Case, D.; Betz, R.; Cerutti, D. S.; Cheatham, T.; Darden, T.; Duke, R.; Giese, T. J.; Gohlke, H.; Götz, A.; Homeyer, N.; Izadi, S.; Janowski, P.; Kaus, J.; Kovalenko, A.; Lee, T.-S.; LeGrand, S.; Li, P.; Lin, C.; Luchko, T.; Kollman, P. Amber 2016, University of California, San Francisco, 2016.

[54]. Maier, J. A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K. E.; Simmerling, C. J. Chem. Theory Comput. 2015, 11(8), 3696-3713.
https://doi.org/10.1021/acs.jctc.5b00255

[55]. Wang, B.; Merz, K. M. J. Chem. Theory Comput. 2005, 2(1), 209-215.
https://doi.org/10.1021/ct050212s

[56]. Price, D. J.; Brooks, C. L. J. Chem. Phys. 2004, 121(20), 10096-10103.
https://doi.org/10.1063/1.1808117

[57]. Case, D. A.; Cheatham, T. E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J. J. Comput. Chem. 2005, 26(16), 1668-1688.
https://doi.org/10.1002/jcc.20290

[58]. Roe, D. R.; Cheatham, T. E. J. Chem. Theory Comput. 2013, 9(7), 3084-3095.
https://doi.org/10.1021/ct400341p

[59]. Grant, B. J.; Rodrigues, A. P. C.; ElSawy, K. M.; McCammon, J. A.; Caves, L. S. D. Bioinformatics 2006, 22(21), 2695-2696.
https://doi.org/10.1093/bioinformatics/btl461

[60]. R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2018.

[61]. Kayne, F. J.; Price, N. C. Biochemistry 1972, 11(23), 4415-4420.
https://doi.org/10.1021/bi00773a031

[62]. Nayak, T. K.; Vij, R.; Bruhova, I.; Shandilya, J.; Auerbach, A. J. General Physiol. 2019, 151(4), 465-477.
https://doi.org/10.1085/jgp.201812215

[63]. Cheenpracha, S.; Srisuwan, R.; Karalai, C.; Ponglimanont, C.; Chantrapromma, S.; Chantrapromma, K.; Fun, H.-K.; Anjum, S.; Atta-ur-Rahman. Tetrahedron 2005, 61 (36), 8656-8662.
https://doi.org/10.1016/j.tet.2005.06.109

[64]. Kannur, D.; Sonavane, L.; Khandelwal, K.; Paranjpe, M.; Dongre, P. J. Adv. Pharm. Tech. Res. 2012, 3(3), 171.
https://doi.org/10.4103/2231-4040.101010

[65]. Mehta, P.; McAuley, D. F.; Brown, M.; Sanchez, E.; Tattersall, R. S.; Manson, J. J. Lancet 2020, 395(10229), 1033-1034.
https://doi.org/10.1016/S0140-6736(20)30628-0

[66]. Mahendra, P.; Bisht, S. Phcog. Rev. 2012, 6(12), 141-146.
https://doi.org/10.4103/0973-7847.99948

[67]. Bagheri, S. M.; Hedesh, S. T.; Mirjalili, A.; Dashti-R, M. H. J. Evid. Based Complementary Altern. Med. 2016, 21(4), 271-276.
https://doi.org/10.1177/2156587215605903

[68]. Shah, S. L.; Wahid, F.; Khan, N.; Farooq, U.; Shah, A. J.; Tareen, S.; Ahmad, F.; Khan, T. Alternative Med. 2018, 2018, 1-8.
https://doi.org/10.1155/2018/8438101

[69]. Dissanayake, K. G. C.; Weerakoon, W. M. T. D. N., Perera, W. P. R. T. Int. J. Sci. Basic Appl. Res. 2020, 51(1), 1-11.

[70]. Ikeda, Y.; Murakami, A.; Ohigashi, H. Mol. Nutr. Food Res. 2008, 52(1), 26-42.
https://doi.org/10.1002/mnfr.200700389

[71]. Ayeleso, T.; Matumba, M. Molecules 2017, 22(11), 1915.
https://doi.org/10.3390/molecules22111915

[72]. Hulme, E. C.; Trevethick, M. A. British J. Pharm. 2010, 161(6), 1219-1237.
https://doi.org/10.1111/j.1476-5381.2009.00604.x

[73]. Karczewska, A.; Nawrocki, S.; Brborowicz, D.; Filas, V.; Mackiewicz, A. Cancer 2000, 88 (9), 2061-2071.
https://doi.org/10.1002/(SICI)1097-0142(20000501)88:9<2061::AID-CNCR12>3.0.CO;2-O

[74]. Murray, J. S.; Politzer, P. WIREs Comput. Mol. Sci. 2011, 1(2), 153-163.
https://doi.org/10.1002/wcms.19

[75]. Anand, K.; Khan, F. I.; Singh, T.; Elumalai, P.; Balakumar, C.; Premnath, D.; Lai, D.; Chuturgoon, A. A.; Saravanan, M. ACS Omega 2020, 5(29), 17973-17982.
https://doi.org/10.1021/acsomega.0c01166

[76]. Bischoff, R.; Schlüter, H. J. Proteomics 2012, 75(8), 2275-2296.
https://doi.org/10.1016/j.jprot.2012.01.041

[77]. Zhuo, L. G.; Liao, W.; Yu, Z. X. Asian J. Org. Chem. 2012, 1(4), 336-345.
https://doi.org/10.1002/ajoc.201200103

[78]. Aihara, J. J. Phys. Chem. A 1999, 103(37), 7487-7495.
https://doi.org/10.1021/jp990092i

[79]. Mukund, V.; Behera, S. K.; Alam, A.; Nagaraju, G. P. Bioinformation 2019, 15(1), 11-17.
https://doi.org/10.6026/97320630015011

[80]. Stryer, L.; Gumport, R. I. Student companion for Stryer's biochemistry - Biochemistry, New York, N.Y., Freeman, 1995.

[81]. Poznanski, J.; Poznanska, A.; Shugar, D. PLoS ONE 2014, 9(6), e99984.
https://doi.org/10.1371/journal.pone.0099984


How to cite


Rajapaksha, H.; Perera, B.; Meepage, J.; Perera, R.; Dissanayake, C. Eur. J. Chem. 2020, 11(4), 351-363. doi:10.5155/eurjchem.11.4.351-363.2043
Rajapaksha, H.; Perera, B.; Meepage, J.; Perera, R.; Dissanayake, C. Mitigate the cytokine storm due to the severe COVID-19: A computational investigation of possible allosteric inhibitory actions on IL-6R and IL-1R using selected phytochemicals. Eur. J. Chem. 2020, 11(4), 351-363. doi:10.5155/eurjchem.11.4.351-363.2043
Rajapaksha, H., Perera, B., Meepage, J., Perera, R., & Dissanayake, C. (2020). Mitigate the cytokine storm due to the severe COVID-19: A computational investigation of possible allosteric inhibitory actions on IL-6R and IL-1R using selected phytochemicals. European Journal of Chemistry, 11(4), 351-363. doi:10.5155/eurjchem.11.4.351-363.2043
Rajapaksha, Harindu, Bingun Tharusha Perera, Jeewani Meepage, Ruwan Tharanga Perera, & Chithramala Dissanayake. "Mitigate the cytokine storm due to the severe COVID-19: A computational investigation of possible allosteric inhibitory actions on IL-6R and IL-1R using selected phytochemicals." European Journal of Chemistry [Online], 11.4 (2020): 351-363. Web. 27 Jan. 2021
Rajapaksha, Harindu, Perera, Bingun, Meepage, Jeewani, Perera, Ruwan, AND Dissanayake, Chithramala. "Mitigate the cytokine storm due to the severe COVID-19: A computational investigation of possible allosteric inhibitory actions on IL-6R and IL-1R using selected phytochemicals" European Journal of Chemistry [Online], Volume 11 Number 4 (31 December 2020)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.11.4.351-363.2043

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2020, 11(4), 351-363 | doi: https://doi.org/10.5155/eurjchem.11.4.351-363.2043 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2021  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2021 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.