European Journal of Chemistry

Mitigate the cytokine storm due to the severe COVID-19: A computational investigation of possible allosteric inhibitory actions on IL-6R and IL-1R using selected phytochemicals

Crossmark


Main Article Content

Harindu Rajapaksha
Bingun Tharusha Perera
Jeewani Meepage
Ruwan Tharanga Perera
Chithramala Dissanayake

Abstract

The novel corona virus 2019 (COVID 19) is growing at an increasing rate with high mortality. Meanwhile, the cytokine storm is the most dangerous and potentially life-threatening event related to COVID 19. Phyto-compounds found in existing Ayurveda drugs have the ability to inhibit the Interleukin 6 (IL-6R) and Interleukin 1 (IL-1R) receptors. IL-6R and IL-1R receptors involve in cytokine storm and recognition of phytochemicals with proven safety profiles could open a pathway to the development of the most effective drugs against cytokine storm. In this study, we intend to perform an in silico investigation of effective phyto compounds, which can be isolated from selected medicinal herbs to avoid cytokine storm, inhibiting the IL-6 and IL-1 receptor binding process. An extensive literature survey followed by virtual screening was carried out to identify phytochemicals with potential anti-hyper-inflammatory action. Flexible docking was conducted for validated models of IL-1R and IL-6R-α with the most promising phytochemicals at possible allosteric sites using AutoDock Vina. Molecular dynamics (MD) studies were conducted for selected protein-ligand complexes using LARMD server and conformational changes were evaluated. According to the results, taepeenin J had Gibbs energy (ΔG) of -10.85 kcal/mol towards IL-1R but had limited oral bioavailability. MD analysis revealed that taepeenin J can cause significant conformational movements in IL-1R. Nortaepeenin B showed a ΔG of -8.5 kcal/mol towards IL-6R-α with an excellent oral bioavailability. MD analysis predicted that it can cause significant conformational movements in IL-6R-α. Hence, the evaluated phytochemicals are potential candidates for further in vitro studies for the development of medicine against cytokine storm on behalf of SARS-COV-2 infected patients.


icon graph This Abstract was viewed 1417 times | icon graph Article PDF downloaded 547 times

How to Cite
(1)
Rajapaksha, H.; Perera, B. T.; Meepage, J.; Perera, R. T.; Dissanayake, C. Mitigate the Cytokine Storm Due to the Severe COVID-19: A Computational Investigation of Possible Allosteric Inhibitory Actions on IL-6R and IL-1R Using Selected Phytochemicals. Eur. J. Chem. 2020, 11, 351-363.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Wu, F.; Zhao, S.; Yu, B.; Chen, Y. M.; Wang, W.; Song, Z. G.; Hu, Y.; Tao, Z. W.; Tian, J. H.; Pei, Y. Y.; Yuan, M. L.; Zhang, Y. L.; Dai, F. H.; Liu, Y.; Wang, Q. M.; Zheng, J. J.; Xu, L.; Holmes, E. C.; Zhang, Y. Z. Nature 2020, 579(7798), 265-269.
https://doi.org/10.1038/s41586-020-2008-3

[2]. Chan, J. F. W.; Kok, K. H.; Zhu, Z.; Chu, H.; To, K. K. W.; Yuan, S.; Yuen, K. Y. Emerg. Microbes. Infect. 2020, 9(1), 221-236.
https://doi.org/10.1080/22221751.2020.1719902

[3]. Culp, W. C., Jr. A & A Practice 2020, 14(6), e01218.
https://doi.org/10.1213/XAA.0000000000001218

[4]. Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Lancet 2020, 395(10223), 497-506.
https://doi.org/10.1016/S0140-6736(20)30183-5

[5]. de Wit, E.; van Doremalen, N.; Falzarano, D.; Munster, V. J. Nat. Rev. Microbiol. 2016, 14(8), 523-534.
https://doi.org/10.1038/nrmicro.2016.81

[6]. Zhou, P.; Yang, X. L.; Wang, X. G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H. R.; Zhu, Y.; Li, B.; Huang, C. L.; Chen, H. D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R. D.; Liu, M. Q.; Chen, Y.; Shen, X. R.; Wang, X.; Zheng, X. S.; Zhao, K.; Chen, Q. J.; Deng, F.; Liu, L. L.; Yan, B.; Zhan, F. X.; Wang, Y. Y.; Xiao, G. F.; Shi, Z. L. Nature 2020, 579(7798), 270-273.
https://doi.org/10.1038/s41586-020-2012-7

[7]. Hirano, T.; Murakami, M. Immunity 2020, 52(5), 731-733.
https://doi.org/10.1016/j.immuni.2020.04.003

[8]. Tanaka, T.; Narazaki, M.; Kishimoto, T. Immunotherapy 2016, 8(8), 959-970.
https://doi.org/10.2217/imt-2016-0020

[9]. Heinrich, P. C.; Behrmann, I.; Haan, S.; Hermanns, H. M.; Müller-Newen, G.; Schaper, F. Biochem. J. 2003, 374(1), 1-20.
https://doi.org/10.1042/bj20030407

[10]. Rajapaksa, R. M. H.; Perera, B. T.; Nisansala, M. J.; Perera, W. P. R. T.; Dissanayake, K. G. C. Global J. Eng. Sci. Res. Manag. 2020, 7, 51-61.

[11]. Radbel, J.; Narayanan, N.; Bhatt, P. J. Chest 2020, 158(1), e15-e19.
https://doi.org/10.1016/j.chest.2020.04.024

[12]. Varghese, J. N.; Moritz, R. L.; Lou, M.-Z.; van Donkelaar, A.; Ji, H.; Ivancic, N.; Branson, K. M.; Hall, N. E.; Simpson, R. J. Proceed. National Acad. Sci. 2002, 99(25), 15959-15964.
https://doi.org/10.1073/pnas.232432399

[13]. Ward, L. D.; Howlett, G. J.; Discolo, G.; Yasukawa, K.; Hammacher, A.; Moritz, R. L.; Simpson, R. J. J. Biol. Chem. 1994, 269, 23286-23289.

[14]. Scheller, J.; Chalaris, A.; Schmidt-Arras, D.; Rose-John, S. Biochim. Biophys. Acta (BBA) - Mol. Cell Res. 2011, 1813(5), 878-888.
https://doi.org/10.1016/j.bbamcr.2011.01.034

[15]. McGonagle, D.; Sharif, K.; O'Regan, A.; Bridgewood, C. Autoimmunity Rev. 2020, 19(6), 102537.
https://doi.org/10.1016/j.autrev.2020.102537

[16]. Zhang, C.; Wu, Z.; Li, J. W.; Zhao, H.; Wang, G. Q. Int. J. Antimicrob. Agent. 2020, 55(5), 105954.
https://doi.org/10.1016/j.ijantimicag.2020.105954

[17]. Lima de Oliveira, M. D.; Teixeira de Oliveira, K. M. ChemRxiv 2020, Retrieved Oct 10, 2020, https://doi.org/10.26434/chemrxiv.12044538.v4
https://doi.org/10.26434/chemrxiv.12044538.v4

[18]. Guo, C.; Li, B.; Ma, H.; Wang, X.; Cai, P.; Yu, Q.; Zhu, L.; Jin, L.; Jiang, C.; Fang, J.; Liu, Q.; Zong, D.; Zhang, W.; Lu, Y.; Li, K.; Gao, X.; Fu, B.; Liu, L.; Ma, X.; Weng, J.; Wei, H.; Jin, T.; Lin, J.; Qu, K. Nat. Commun. 2020, 11(1), https://doi.org/10.1038/s41467-020-17834-w
https://doi.org/10.1038/s41467-020-17834-w

[19]. Wang, J.; Qiao, C.; Xiao, H.; Lin, Z.; Li, Y.; Zhang, J.; Shen, B.; Fu, T.; Feng, J. Drug Des. Devel. Ther. 2016, 10, 4091-4100.
https://doi.org/10.2147/DDDT.S118457

[20]. Monteleone, G.; Sarzi-Puttini, P. C.; Ardizzone, S. Lancet Rheumatol. 2020, 2(5), e255-e256.
https://doi.org/10.1016/S2665-9913(20)30092-8

[21]. Liu, B.; Li, M.; Zhou, Z.; Guan, X.; Xiang, Y. J. Autoimmunity 2020, 111, 102452.
https://doi.org/10.1016/j.jaut.2020.102452

[22]. AbdelMassih, A. F.; Ramzy, D.; Nathan, L.; Aziz, S.; Ashraf, M.; Youssef, N. H.; Hafez, N.; Saeed, R.; Agha, H. Cardiovasc. Endocrinol. Metabol. 2020, 9(3), 121-124.
https://doi.org/10.1097/XCE.0000000000000207

[23]. Velavan, T. P.; Meyer, C. G. Trop. Med. Int. Health 2020, 25(3), 278-280.
https://doi.org/10.1111/tmi.13383

[24]. Kumar, N.; Awasthi, A.; Kumari, A.; Sood, D.; Jain, P.; Singh, T.; Sharma, N.; Grover, A.; Chandra, R. J. Biomol. Struc. Dynam. 2020, 1-16.
https://doi.org/10.1080/07391102.2020.1808072

[25]. Kumar, N.; Sood, D.; van der Spek, P. J.; Sharma, H. S.; Chandra, R. J. Proteome Res. 2020, 19(11), 4678-4689.
https://doi.org/10.1021/acs.jproteome.0c00367

[26]. Kumar, N.; Sood, D.; Chandra, R. RSC Adv. 2020, 10(59), 35856-35872.
https://doi.org/10.1039/D0RA06849G

[27]. Kumar, N.; Sood, D.; Tomar, R.; Chandra, R. ACS Omega 2019, 4(25), 21370-21380.
https://doi.org/10.1021/acsomega.9b03035

[28]. Kumar, N.; Sood, D.; Chandra, R. ACS Pharmacol. Transl. Sci. 2020. https://doi.org/10.1021/acsptsci.0c00139.
https://doi.org/10.1021/acsptsci.0c00139

[29]. Dissanayake, K.G.C.; Perera, W. P. R. T. Res. J. Med. Plant 2020, 8(2), 135-139.

[30]. Dissanayake, L.; Perera, P.; Attanayaka, T.; Heberle, E.; Jayawardhana, M. Plants 2020, 9(10), 1315.
https://doi.org/10.3390/plants9101315

[31]. PubMed, U. S. National Library of Medicine, Retrieved Oct 10, 2020, from https://pubchem.ncbi.nlm.nih.gov

[32]. Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P. W.; Tang, Y. J. Chem. Inf. Model. 2012, 52(11), 3099-3105.
https://doi.org/10.1021/ci300367a

[33]. Berman, H. M. Nucleic Acids Res. 2000, 28(1), 235-242.
https://doi.org/10.1093/nar/28.1.235

[34]. Basic Local Alignment Search Tool, National Center for Biotechnology Information, U. S. National Library of Medicine, Retrieved Oct 10, 2020, from https://blast.ncbi.nlm.nih.gov/Blast.cgi

[35]. Eswar, N.; Webb, B.; Marti-Renom, M. A.; Madhusudhan, M. S.; Eramian, D.; Shen, M.; Pieper, U.; Sali, A. Curr. Protoc. Bioinform. 2006, 15(1), 5.6.1-5.6.30.
https://doi.org/10.1002/0471250953.bi0506s15

[36]. Kuntal, B. K.; Aparoy, P.; Reddanna, P. BMC Res Notes 2010, 3(1), 226.
https://doi.org/10.1186/1756-0500-3-226

[37]. Shen, M.; Sali, A. Protein Sci. 2006, 15(11), 2507-2524.
https://doi.org/10.1110/ps.062416606

[38]. Shuid, A. N.; Kempster, R.; McGuffin, L. J. Nucleic Acids Res. 2017, 45(W1), W422-W428.
https://doi.org/10.1093/nar/gkx249

[39]. Eisenberg, D.; Lüthy, R.; Bowie, J. U. Meth. Enzymol. 1997, 277, 396-404.
https://doi.org/10.1016/S0076-6879(97)77022-8

[40]. Colovos, C.; Yeates, T. O. Protein Sci. 1993, 2(9), 1511-1519.
https://doi.org/10.1002/pro.5560020916

[41]. Laskowski, R. A.; MacArthur, M. W.; Moss, D. S.; Thornton, J. M. J. Appl. Cryst. 1993, 26(2), 283-291.
https://doi.org/10.1107/S0021889892009944

[42]. Torrisi, M.; Kaleel, M.; Pollastri, G. BioRxiv 2018, 289033.

[43]. Sippl, M. J. Proteins 1993, 17(4), 355-362.
https://doi.org/10.1002/prot.340170404

[44]. Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. Nucleic Acids Res. 2018, 46(W1), W363-W367.
https://doi.org/10.1093/nar/gky473

[45]. Halgren, T. A. J. Comput. Chem. 1996, 17 (5-6), 490-519.
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P

[46]. Gordon, M. S.; Schmidt, M. W. Advances in Electronic Structure Theory. In Theory and Applications of Computational Chemistry; Elsevier, 2005; pp 1167-1189.
https://doi.org/10.1016/B978-044451719-7/50084-6

[47]. Yang, J. F.; Wang, F.; Chen, Y. Z.; Hao, G. F.; Yang, G. F. Brief. Bioinformatics 2019, bbz141, https://doi.org/10.1093/bib/bbz141.
https://doi.org/10.1093/bib/bbz141

[48]. Marques, P. R. B. de O.; Yamanaka, H. Quim. Nova 2008, 31(7), 1791-1799.
https://doi.org/10.1590/S0100-40422008000700034

[49]. Plewczynski, D.; Lazniewski, M.; Augustyniak, R.; Ginalski, K. J. Comput. Chem. 2010, 32(4), 742-755.
https://doi.org/10.1002/jcc.21643

[50]. Wenthur, C. J.; Gentry, P. R.; Mathews, T. P.; Lindsley, C. W. Annu. Rev. Pharmacol. Toxicol. 2014, 54(1), 165-184.
https://doi.org/10.1146/annurev-pharmtox-010611-134525

[51]. Wold, E. A.; Chen, J.; Cunningham, K. A.; Zhou, J. J. Med. Chem. 2018, 62(1), 88-127.
https://doi.org/10.1021/acs.jmedchem.8b00875

[52]. Yang, C. Y. PLoS ONE 2015, 10(2), e0118671.
https://doi.org/10.1371/journal.pone.0118671

[53]. Case, D.; Betz, R.; Cerutti, D. S.; Cheatham, T.; Darden, T.; Duke, R.; Giese, T. J.; Gohlke, H.; Götz, A.; Homeyer, N.; Izadi, S.; Janowski, P.; Kaus, J.; Kovalenko, A.; Lee, T.-S.; LeGrand, S.; Li, P.; Lin, C.; Luchko, T.; Kollman, P. Amber 2016, University of California, San Francisco, 2016.

[54]. Maier, J. A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K. E.; Simmerling, C. J. Chem. Theory Comput. 2015, 11(8), 3696-3713.
https://doi.org/10.1021/acs.jctc.5b00255

[55]. Wang, B.; Merz, K. M. J. Chem. Theory Comput. 2005, 2(1), 209-215.
https://doi.org/10.1021/ct050212s

[56]. Price, D. J.; Brooks, C. L. J. Chem. Phys. 2004, 121(20), 10096-10103.
https://doi.org/10.1063/1.1808117

[57]. Case, D. A.; Cheatham, T. E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J. J. Comput. Chem. 2005, 26(16), 1668-1688.
https://doi.org/10.1002/jcc.20290

[58]. Roe, D. R.; Cheatham, T. E. J. Chem. Theory Comput. 2013, 9(7), 3084-3095.
https://doi.org/10.1021/ct400341p

[59]. Grant, B. J.; Rodrigues, A. P. C.; ElSawy, K. M.; McCammon, J. A.; Caves, L. S. D. Bioinformatics 2006, 22(21), 2695-2696.
https://doi.org/10.1093/bioinformatics/btl461

[60]. R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2018.

[61]. Kayne, F. J.; Price, N. C. Biochemistry 1972, 11(23), 4415-4420.
https://doi.org/10.1021/bi00773a031

[62]. Nayak, T. K.; Vij, R.; Bruhova, I.; Shandilya, J.; Auerbach, A. J. General Physiol. 2019, 151(4), 465-477.
https://doi.org/10.1085/jgp.201812215

[63]. Cheenpracha, S.; Srisuwan, R.; Karalai, C.; Ponglimanont, C.; Chantrapromma, S.; Chantrapromma, K.; Fun, H.-K.; Anjum, S.; Atta-ur-Rahman. Tetrahedron 2005, 61 (36), 8656-8662.
https://doi.org/10.1016/j.tet.2005.06.109

[64]. Kannur, D.; Sonavane, L.; Khandelwal, K.; Paranjpe, M.; Dongre, P. J. Adv. Pharm. Tech. Res. 2012, 3(3), 171.
https://doi.org/10.4103/2231-4040.101010

[65]. Mehta, P.; McAuley, D. F.; Brown, M.; Sanchez, E.; Tattersall, R. S.; Manson, J. J. Lancet 2020, 395(10229), 1033-1034.
https://doi.org/10.1016/S0140-6736(20)30628-0

[66]. Mahendra, P.; Bisht, S. Phcog. Rev. 2012, 6(12), 141-146.
https://doi.org/10.4103/0973-7847.99948

[67]. Bagheri, S. M.; Hedesh, S. T.; Mirjalili, A.; Dashti-R, M. H. J. Evid. Based Complementary Altern. Med. 2016, 21(4), 271-276.
https://doi.org/10.1177/2156587215605903

[68]. Shah, S. L.; Wahid, F.; Khan, N.; Farooq, U.; Shah, A. J.; Tareen, S.; Ahmad, F.; Khan, T. Alternative Med. 2018, 2018, 1-8.
https://doi.org/10.1155/2018/8438101

[69]. Dissanayake, K. G. C.; Weerakoon, W. M. T. D. N., Perera, W. P. R. T. Int. J. Sci. Basic Appl. Res. 2020, 51(1), 1-11.

[70]. Ikeda, Y.; Murakami, A.; Ohigashi, H. Mol. Nutr. Food Res. 2008, 52(1), 26-42.
https://doi.org/10.1002/mnfr.200700389

[71]. Ayeleso, T.; Matumba, M. Molecules 2017, 22(11), 1915.
https://doi.org/10.3390/molecules22111915

[72]. Hulme, E. C.; Trevethick, M. A. British J. Pharm. 2010, 161(6), 1219-1237.
https://doi.org/10.1111/j.1476-5381.2009.00604.x

[73]. Karczewska, A.; Nawrocki, S.; Brborowicz, D.; Filas, V.; Mackiewicz, A. Cancer 2000, 88 (9), 2061-2071.
https://doi.org/10.1002/(SICI)1097-0142(20000501)88:9<2061::AID-CNCR12>3.0.CO;2-O

[74]. Murray, J. S.; Politzer, P. WIREs Comput. Mol. Sci. 2011, 1(2), 153-163.
https://doi.org/10.1002/wcms.19

[75]. Anand, K.; Khan, F. I.; Singh, T.; Elumalai, P.; Balakumar, C.; Premnath, D.; Lai, D.; Chuturgoon, A. A.; Saravanan, M. ACS Omega 2020, 5(29), 17973-17982.
https://doi.org/10.1021/acsomega.0c01166

[76]. Bischoff, R.; Schlüter, H. J. Proteomics 2012, 75(8), 2275-2296.
https://doi.org/10.1016/j.jprot.2012.01.041

[77]. Zhuo, L. G.; Liao, W.; Yu, Z. X. Asian J. Org. Chem. 2012, 1(4), 336-345.
https://doi.org/10.1002/ajoc.201200103

[78]. Aihara, J. J. Phys. Chem. A 1999, 103(37), 7487-7495.
https://doi.org/10.1021/jp990092i

[79]. Mukund, V.; Behera, S. K.; Alam, A.; Nagaraju, G. P. Bioinformation 2019, 15(1), 11-17.
https://doi.org/10.6026/97320630015011

[80]. Stryer, L.; Gumport, R. I. Student companion for Stryer's biochemistry - Biochemistry, New York, N.Y., Freeman, 1995.

[81]. Poznanski, J.; Poznanska, A.; Shugar, D. PLoS ONE 2014, 9(6), e99984.
https://doi.org/10.1371/journal.pone.0099984

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).