European Journal of Chemistry 2021, 12(1), 86-108 | doi: https://doi.org/10.5155/eurjchem.12.1.86-108.2060 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | REVIEW ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

MgO nanoparticles: Synthesis, characterization, and applications as a catalyst for organic transformations


Harshal Dabhane (1) orcid , Suresh Ghotekar (2) orcid , Pawan Tambade (3,*) orcid , Shreyas Pansambal (4) orcid , Rajeshwari Oza (5) orcid , Vijay Medhane (6) orcid

(1) Department of Chemistry, Guruvarya Mamasaheb Dandekar Arts, Bhagwantrao Waje Commerce and Science College, Sinnar, Nashik, Affiliated to Savitribai Phule Pune University, Pune, Maharashtra, 422 103, India
(2) Department of Chemistry, Sangamner Nagarpalika Arts, Damodar Jagannath Malpani Commerce and Bastiram Narayandas Sarda Science College, Sangamner, Affiliated to Savitribai Phule Pune University, Maharashtra, 422 605 India
(3) Department of Chemistry, Karmaveer Kakasaheb Wagh Arts, Science and Commerce College, Pimpalgaon (B), Nashik, Affiliated to Savitribai Phule Pune University, Maharashtra, 422 209 India
(4) Department of Chemistry, Sangamner Nagarpalika Arts, Damodar Jagannath Malpani Commerce and Bastiram Narayandas Sarda Science College, Sangamner, Affiliated to Savitribai Phule Pune University, Maharashtra, 422 605 India
(5) Department of Chemistry, Sangamner Nagarpalika Arts, Damodar Jagannath Malpani Commerce and Bastiram Narayandas Sarda Science College, Sangamner, Affiliated to Savitribai Phule Pune University, Maharashtra, 422 605 India
(6) Department of Chemistry, Karmaveer Raosaheb Thorat Arts, Bhausaheb Hiray Commerce & Annasaheb Murkute Science College (KTHM College), Nashik, Affiliated to Savitribai Phule Pune University, Pune Maharashtra, 422002 India
(*) Corresponding Author

Received: 06 Jan 2021 | Revised: 19 Feb 2021 | Accepted: 20 Feb 2021 | Published: 31 Mar 2021 | Issue Date: March 2021

Abstract


Currently, the size and shape selective synthesis of nanoparticles (NPs) and their varied catalytic applications are gaining significant enthusiasm in the field of nanochemistry. Homogeneous catalysis is crucial due to its inherent benefits like high selectivity and mild reaction conditions. Nevertheless, it endures with serious disadvantages of catalysts and/or product separation/recycles compared to their heterogeneous counterparts restricting their catalytic applications. The utilization of catalysts in the form of nano-size is an elective methodology for the combination of merits of homogeneous and heterogeneous catalysis. Magnesium oxide (MgO) NPs are important as they find applications for catalysis, organic transformation, and synthesis of fine chemicals and organic intermediates. The applications of MgO NPs in diverse organic transformations including oxidation, reduction, epoxidation, condensation, and C-C, C-N, C-O, C-S bond formation in a variety of notable heterocyclic reactions are also discussed. The use of MgO NPs in organic transformation is advantageous as it mitigates the use of ligands; the procurable separation of catalyst for recyclability makes the protocol heterogeneous and monetary. MgO NPs gave efficacious catalytic performance towards the desired products due to high surface area. By considering these efficient merits, scientists have focused their attentions towards stupendous applications of MgO NPs in selective organic transformation. In the current review article, we summarized the synthesis of MgO NPs and numerous characterization techniques, whereas the application section illustrates their utility as a catalyst in several organic transformations. We believe this decisive appraisal will provide imperative details to further advance the application of MgO NPs in selective catalysis.


Keywords


Catalysis; MgO NPs; Heterocycles; Nanocatalysis; Characterization; Organic reactions

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.12.1.86-108.2060

Links for Article


| | | | | | |

| | | | | | |

| | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 270 times | icon graph PDF Article downloaded 70 times


Cited by

Crossref database responds too late...

References


[1]. Gawande, M. B.; Goswami, A.; Felpin, F.-X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R. S. Chem. Rev. 2016, 116 (6), 3722-3811.
https://doi.org/10.1021/acs.chemrev.5b00482

[2]. Ghotekar, S.; Dabhane, H.; Pansambal, S.; Oza, R.; Tambade, P.; Medhane, V. Adv. J. Chem. B 2020, 2 (3), 102-111.

[3]. Sinha, T.; Ahmaruzzaman, Md.; Adhikari, P. P.; Bora, R. ACS Sustainable Chem. Eng. 2017, 5 (6), 4645-4655.
https://doi.org/10.1021/acssuschemeng.6b03114

[4]. Dabhane, H. A.; Ghotekar, S.; Tambade, P. J.; Medhane, V. J. Asian J. Nanosci. Mater. 2020, 3 (4), 291-299.

[5]. Tarannum, N.; Divya, D.; Gautam, Y. K. RSC Adv. 2019, 9 (60), 34926-34948.
https://doi.org/10.1039/C9RA04164H

[6]. Nikam, A.; Pagar, T.; Ghotekar, S.; Pagar, K.; Pansambal, S. J. Chem. Rev. 2019, 1 (3), 154-163.

[7]. Nasrollahzadeh, M.; Ghorbannezhad, F.; Issaabadi, Z.; Sajadi, S. M. Chem. Rec. 2018, 19 (2-3), 601-643.
https://doi.org/10.1002/tcr.201800069

[8]. Bhatte, K. D.; Tambade, P. J.; Dhake, K. P.; Bhanage, B. M. Catalysis Commun. 2010, 11 (15), 1233-1237.
https://doi.org/10.1016/j.catcom.2010.06.011

[9]. Nasrollahzadeh, M.; Sajjadi, M.; Dadashi, J.; Ghafuri, H. Adv. Colloid Interface Sci. 2020, 276, 102103.
https://doi.org/10.1016/j.cis.2020.102103

[10]. Ghotekar, S.; Pansambal, S.; Pawar, S. P.; Pagar, T.; Oza, R.; Bangale, S. SN Appl. Sci. 2019, 1 (11), 1342.
https://doi.org/10.1007/s42452-019-1389-0

[11]. Ahmed, S.; Annu; Ikram, S.; Yudha S., S. J. Photochem. Photobiol. B: Biol. 2016, 161, 141-153.
https://doi.org/10.1016/j.jphotobiol.2016.04.034

[12]. Pansambal, S.; Ghotekar, S.; Shewale, S.; Deshmukh, K.; Barde, N.; Bardapurkar, P. J. Water. Environ. Nanotechnol. 2019, 4 (3), 174-186.

[13]. Pilarska, A. A.; Klapiszewski, Ł.; Jesionowski, T. Powder Techn. 2017, 319, 373-407.
https://doi.org/10.1016/j.powtec.2017.07.009

[14]. Mirtalebi, S. S.; Almasi, H.; Alizadeh Khaledabad, M. Inter. J. Bio. Macromolec. 2019, 128, 848-857.
https://doi.org/10.1016/j.ijbiomac.2019.02.007

[15]. Dobrucka, R. Iran J. Sci. Technol. Trans. Sci. 2016, 42 (2), 547-555.
https://doi.org/10.1007/s40995-016-0076-x

[16]. Wu, C. C.; Cao, X.; Wen, Q.; Wang, Z.; Gao, Q.; Zhu, H. Talanta 2009, 79 (5), 1223-1227.
https://doi.org/10.1016/j.talanta.2009.04.038

[17]. Hashim, A.; Hadi, A. Ukr. J. Phys. 2017, 62 (12), 1050-1056.
https://doi.org/10.15407/ujpe62.12.1050

[18]. Krishnamoorthy, K.; Moon, J. Y.; Hyun, H. B.; Cho, S. K.; Kim, S. J. J. Mater. Chem. 2012, 22 (47), 24610-24617.
https://doi.org/10.1039/c2jm35087d

[19]. Jhansi, K.; Jayarambabu, N.; Reddy, K. P.; Reddy, N. M.; Suvarna, R. P.; Rao, K. V.; Kumar, V. R.; Rajendar, V. Biotech. 2017, 7 (4), 263-274.
https://doi.org/10.1007/s13205-017-0894-3

[20]. Roy, B.; Roy, A. S.; Panda, A. B.; Islam, Sk. M.; Chattopadhyay, A. P. Chem. Select 2016, 1 (15), 4778-4784.
https://doi.org/10.1002/slct.201600380

[21]. Nijalingappa, T. B.; Veeraiah, M. K.; Basavaraj, R. B.; Darshan, G. P.; Sharma, S. C.; Nagabhushana, H. Biocatal. Agricul. Biotechn. 2019, 18, 100991.
https://doi.org/10.1016/j.bcab.2019.01.029

[22]. Raveesha, H. R.; Nayana, S.; Vasudha, D. R.; Begum, J. P. S.; Pratibha, S.; Ravikumara, C. R.; Dhananjaya, N. J. Sci. Adv. Mater. Dev. 2019, 4 (1), 57-65.
https://doi.org/10.1016/j.jsamd.2019.01.003

[23]. Karthik, K.; Dhanuskodi, S.; Prabu Kumar, S.; Gobinath, C.; Sivaramakrishnan, S. Mater. Lett. 2017, 206, 217-220.
https://doi.org/10.1016/j.matlet.2017.07.004

[24]. HiHill, M. R.; Jones, A. W.; Russell, J. J.; Roberts, N. K.; Lamb, R. N. J. Mater. Chem. 2004, 14 (21), 3198 -3202.
https://doi.org/10.1039/b405816j

[25]. Tamilselvi, P.; Yelilarasi, A.; Hema, M.; Anbarasan, R. Nano Bull. 2013, 2 (1), 130106.

[26]. Bian, S.-W.; Baltrusaitis, J.; Galhotra, P.; Grassian, V. H. J. Mater. Chem. 2010, 20 (39), 8705 -8710.
https://doi.org/10.1039/c0jm01261k

[27]. Rao, K. G.; Ashok, C. H.; Rao, K. V.; Chakra, C. S. Inter. J. Sci. Res. 2014, 3 (12), 43-46.

[28]. Li, S.; Zhou, B.; Ren, B.; Xing, L.; Tan, L.; Dong, L.; Li, J. Mater. Lett. 2016, 171, 204-207.
https://doi.org/10.1016/j.matlet.2016.02.048

[29]. Samodi, A.; Rashidi, A.; Marjani, K.; Ketabi, S. Mater. Lett. 2013, 109, 269-274.
https://doi.org/10.1016/j.matlet.2013.07.085

[30]. Yousefi, S.; Ghasemi, B.; Tajally, M.; Asghari, A. J. Alloys Comp. 2017, 711, 521-529.
https://doi.org/10.1016/j.jallcom.2017.04.036

[31]. Darvishi Cheshmeh Soltani, R.; Safari, M.; Mashayekhi, M. Ultrasonics Sonochem. 2016, 30, 123-131.
https://doi.org/10.1016/j.ultsonch.2015.11.018

[32]. Makhluf, S.; Dror, R.; Nitzan, Y.; Abramovich, Y.; Jelinek, R.; Gedanken, A. Adv. Funct. Mater. 2005, 15 (10), 1708-1715.
https://doi.org/10.1002/adfm.200500029

[33]. Hadia, N. M. A.; Mohamed, H. A. H. Mater. Sci. Semicond. Proces. 2015, 29, 238-244.
https://doi.org/10.1016/j.mssp.2014.03.049

[34]. Ding, Y.; Zhang, G.; Wu, H.; Hai, B.; Wang, L.; Qian, Y. Chem. Mater. 2001, 13 (2), 435-440.
https://doi.org/10.1021/cm000607e

[35]. Nemade, K. R.; Waghuley, S. A. Inter. J. Metals 2014, 2014, 1-4.
https://doi.org/10.1155/2014/389416

[36]. Abdul-Ameer, Z. N. Adv. Nat. Appl. Sci. 2016, 10 (12), 72-76.

[37]. Rao, K. V.; Sunandana, C. S. J. Mater. Sci. 2007, 43 (1), 146-154.
https://doi.org/10.1007/s10853-007-2131-7

[38]. Chen, H.; Luo, Z.; Chen, X.; Kang, F. Micro Nano Lett. 2017, 12 (1), 27-29.
https://doi.org/10.1049/mnl.2016.0549

[39]. Subramania, A.; Kumar, G. V.; Priya, A. R. S.; Vasudevan, T. Nanotechn. 2007, 18 (22), 225601.
https://doi.org/10.1088/0957-4484/18/22/225601

[40]. Mageshwari, K.; Mali, S. S.; Sathyamoorthy, R.; Patil, P. S. Powder Technol. 2013, 249, 456-462.
https://doi.org/10.1016/j.powtec.2013.09.016

[41]. Ganguly, A.; Trinh, P.; Ramanujachary, K. V.; Ahmad, T.; Mugweru, A.; Ganguli, A. K. J. Colloid Interface Sci. 2011, 353 (1), 137-142.
https://doi.org/10.1016/j.jcis.2010.09.041

[42]. Phuoc, T. X.; Howard, Bret. H.; Martello, D. V.; Soong, Y.; Chyu, M. K. Optics Lasers Eng. 2008, 46 (11), 829-834.
https://doi.org/10.1016/j.optlaseng.2008.05.018

[43]. Smovzh, D. V.; Sakhapov, S. Z.; Zaikovskii, A. V.; Chernova, S. A.; Novopashin, S. A. Ceramics Inter. 2019, 45 (6), 7338-7343.
https://doi.org/10.1016/j.ceramint.2019.01.017

[44]. Yang, Q.; Sha, J.; Wang, L.; Wang, J.; Yang, D. Mater. Sci. Eng. C 2006, 26 (5-7), 1097-1101.
https://doi.org/10.1016/j.msec.2005.09.082

[45]. Chae, S.; Lee, H.; Pikhitsa, P. V.; Kim, C.; Shin, S.; Kim, D. H.; Choi, M. Powder Technol. 2017, 305, 132-140.
https://doi.org/10.1016/j.powtec.2016.09.057

[46]. Ismail, R. A.; Mousa, A. M.; Shaker, S. S. Mater. Res. Express 2019, 6 (7), 075007.
https://doi.org/10.1088/2053-1591/ab1208

[47]. Essien, E. R.; Atasie, V. N.; Okeafor, A. O.; Nwude, D. O. Int. Nano. Lett. 2019, 10 (1), 43-48.
https://doi.org/10.1007/s40089-019-00290-w

[48]. Ogunyemi, S. O.; Zhang, F.; Abdallah, Y.; Zhang, M.; Wang, Y.; Sun, G.; Qiu, W.; Li, B. Artific. Cells, Nanomed. Biotechnol. 2019, 47 (1), 2230-2239.
https://doi.org/10.1080/21691401.2019.1622552

[49]. Joghee, S.; Ganeshan, P.; Vincent, A.; Hong, S. I. Bio. Nano Sci. 2018, 9 (1), 141-154.
https://doi.org/10.1007/s12668-018-0573-9

[50]. Jeevanandam, J.; Chan, Y. S.; Danquah, M. K. New J. Chem. 2017, 41 (7), 2800-2814.
https://doi.org/10.1039/C6NJ03176E

[51]. Anil Kumar, M. R.; Nagaswarupa, H. P.; Anantharaju, K. S.; Gurushantha, K.; Pratapkumar, C.; Prashantha, S. C.; Shashishekar, T. R.; Nagabhushana, H.; Sharma, S. C.; Vidya, Y. S.; Daruka Prasad, B.; Vivek Babu, C. S.; Vishnu Mahesh, K. R. Mater. Res. Express 2015, 2 (9), 095004.
https://doi.org/10.1088/2053-1591/2/9/095004

[52]. Das, B.; Moumita, S.; Ghosh, S.; Khan, M. I.; Indira, D.; Jayabalan, R.; Tripathy, S. K.; Mishra, A.; Balasubramanian, P. Mater. Sci. Eng. C 2018, 91, 436-444.
https://doi.org/10.1016/j.msec.2018.05.059

[53]. Verma, S. K.; Nisha, K.; Panda, P. K.; Patel, P.; Kumari, P.; Mallick, M. A.; Sarkar, B.; Das, B. Sci. Total Environ. 2020, 713, 136521.
https://doi.org/10.1016/j.scitotenv.2020.136521

[54]. Oladipo, A. A.; Adeleye, O. J.; Oladipo, A. S.; Aleshinloye, A. O. J. Water Process Eng. 2017, 16, 142-148.
https://doi.org/10.1016/j.jwpe.2017.01.003

[55]. Essien, E. R.; Atasie, V. N.; Oyebanji, T. O.; Nwude, D. O. Chem. Pap. 2020, 74 (7), 2101-2109.
https://doi.org/10.1007/s11696-020-01056-x

[56]. John Sushma, N.; Prathyusha, D.; Swathi, G.; Madhavi, T.; Deva Prasad Raju, B.; Mallikarjuna, K.; Kim, H. S. Appl. Nanosci. 2015, 6 (3), 437-44.
https://doi.org/10.1007/s13204-015-0455-1

[57]. Suresh, J.; Pradheesh, G.; Alexramani, V.; Sundrarajan, M.; Hong, S. I. Adv. Powder Technol. 2018, 29 (7), 1685-1694.
https://doi.org/10.1016/j.apt.2018.04.003

[58]. Jain, A.; Wadhawan, S.; Kumar, V.; Mehta, S. K. Chem. Phys. Lett. 2018, 706, 53-61.
https://doi.org/10.1016/j.cplett.2018.05.069

[59]. Mohanasrinivasan, V.; Subathra Devi, C.; Mehra, A.; Prakash, S.; Agarwal, A.; Selvarajan, E.; Jemimah Naine, S. Bio. Nano Sci. 2017, 8 (1), 249-253.
https://doi.org/10.1007/s12668-017-0480-5

[60]. Abdel-Aziz, M. M.; Emam, T. M.; Elsherbiny, E. A. Mater. Sci. Eng. C 2020, 109, 110617.
https://doi.org/10.1016/j.msec.2019.110617

[61]. Raliya, R.; Tarafdar, J. C.; Choudhary, K.; Mal, P.; Raturi, A.; Gautam, R.; Singh, S. K. J. Bionanosci. 2014, 8 (1), 34-3.
https://doi.org/10.1166/jbns.2014.1195

[62]. Ibrahem, E.; Thalij, K.; Badawy, A. Biotechnol. J. Intern. 2017, 18 (1), 1-7.
https://doi.org/10.9734/BJI/2017/29534

[63]. El-Sayyad, G. S.; Mosallam, F. M.; El-Batal, A. I. Adv. Powder Technol. 2018, 29 (11), 2616-2625.
https://doi.org/10.1016/j.apt.2018.07.009

[64]. Sutradhar, N.; Sinhamahapatra, A.; Pahari, S. K.; Pal, P.; Bajaj, H. C.; Mukhopadhyay, I.; Panda, A. B. J. Phys. Chem. C 2011, 115 (25), 12308-12316.
https://doi.org/10.1021/jp2022314

[65]. Holzwarth, U.; Gibson, N. Nature Nanotech. 2011, 6 (9), 534-534.
https://doi.org/10.1038/nnano.2011.145

[66]. Yerragunta, V.; Kumaraswamy, T.; Suman, D.; Anusha, V.; Patil, P.; Samhitha, T. Pharma Tutor. 2013, 1 (2), 54-59.

[67]. Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chem. Rev. 2017, 117 (12), 7762-7810.
https://doi.org/10.1021/acs.chemrev.7b00020

[68]. Jung, J.-C.; Lee, Y.; Min, D.; Jung, M.; Oh, S. Molecules 2017, 22 (11), 187.
https://doi.org/10.3390/molecules22111872

[69]. Patil, A. B.; Bhanage, B. M. Catalysis Commun. 2013, 36, 79-83.
https://doi.org/10.1016/j.catcom.2013.03.012

[70]. Bain, S. W.; Ma, Z.; Cui, Z. M.; Zhang, L. S.; Niu, F.; Song, W. G. J. Phys. Chem. C 2008, 112 (30), 11340-11344.
https://doi.org/10.1021/jp802863j

[71]. Jadhav, A. H.; Prasad, D.; Jadhav, H. S.; Nagaraja, B. M.; Seo, J. G. Energy 2018, 160, 635-647.
https://doi.org/10.1016/j.energy.2018.07.036

[72]. Choudary, B. M.; Kantam, M. L.; Ranganath, K. V. S.; Mahendar, K.; Sreedhar, B. J. Am. Chem. Soc. 2004, 126 (11), 3396-3397.
https://doi.org/10.1021/ja038954n

[73]. Roy, S.; Pericas, M. A. Org. Biomol. Chem. 2009, 7 (13), 2669-2677.
https://doi.org/10.1039/b903921j

[74]. Vidruk, R.; Landau, M. V.; Herskowitz, M.; Talianker, M.; Frage, N.; Ezersky, V.; Froumin, N. J. Catal. 2009, 263 (1), 196-204.
https://doi.org/10.1016/j.jcat.2009.02.014

[75]. Choudary, B. M.; Chakrapani, L.; Ramani, T.; Kumar, K. V.; Kantam, M. L. D. Tetrahedron 2006, 62 (41), 9571-9576.
https://doi.org/10.1016/j.tet.2006.07.091

[76]. Choudary, B. M.; Ranganath, K. V. S.; Pal, U.; Kantam, M. L.; Sreedhar, B. J. Am. Chem. Soc. 2005, 127 (38), 13167-13171.
https://doi.org/10.1021/ja0440248

[77]. Tajbakhsh, M.; Farhang, M.; Hosseini, A. J. Iran Chem. Soc. 2013, 11 (3), 665-672.
https://doi.org/10.1007/s13738-013-0338-x

[78]. Hosseini-Sarvari, M.; Parhizgar, G. Org. Chem. Res. 2016, 2 (2), 177-191.

[79]. Mashayekh-Salehi, A.; Moussavi, G.; Yaghmaeian, K. Chem. Eng. J. 2017, 310, 157-169.
https://doi.org/10.1016/j.cej.2016.10.096

[80]. Mohammadi, L.; Bazrafshan, E.; Noroozifar, M.; Ansari-Moghaddam, A.; Barahuie, F.; Balarak, D. Water Sci. Technol. 2017, 76 (11), 3054-3068.
https://doi.org/10.2166/wst.2017.479

[81]. Safari, J.; Zarnegar, Z.; Heydarian, M. J. Taibah Univ. Sci. 2013, 7 (1), 17-25.
https://doi.org/10.1016/j.jtusci.2013.03.001

[82]. Ghashang, M.; Mansoor, S. S.; Mohammad Shafiee, M. R.; Kargar, M.; Najafi Biregan, M.; Azimi, F.; Taghrir, H. J. Sulfur Chem. 2016, 37 (4), 377-390.
https://doi.org/10.1080/17415993.2016.1149856

[83]. Brahmachari, G.; Laskar, S. Phosphorus Sulfur Silicon Relat. Elem. 2014, 189 (7-8), 873-888.
https://doi.org/10.1080/10426507.2014.903484

[84]. Kumar, D.; Reddy, V. B.; Mishra, B. G.; Rana, R. K.; Nadagouda, M. N.; Varma, R. S. Tetrahedron 2007, 63 (15), 3093-3097.
https://doi.org/10.1016/j.tet.2007.02.019

[85]. Kumar, D.; Reddy, V. B.; Sharad, S.; Dube, U.; Kapur, S. Eur. J. Med. Chem. 2009, 44 (9), 3805-3809.
https://doi.org/10.1016/j.ejmech.2009.04.017

[86]. Karmakar, B.; Nayak, A.; Banerji, J. Tetrahedron Lett. 2012, 53 (37), 5004-5007.
https://doi.org/10.1016/j.tetlet.2012.07.030

[87]. Moghaddam‐Manesh, M.; Ghazanfari, D.; Sheikhhosseini, E.; Akhgar, M. Chem. Select 2019, 4 (31), 9247-9251.
https://doi.org/10.1002/slct.201900935

[88]. Safaei-Ghomi, J.; Eshteghal, F.; Ghasemzadeh, M. A. Acta Chim. Slov. 2014, 61 (4), 703-708.

[89]. Mohammadzadeh, I.; Sheibani, H. Chinese Chem. Lett. 2012, 23 (12), 1327-1330.
https://doi.org/10.1016/j.cclet.2012.10.007

[90]. Seifi, M.; Sheibani, H. Catal. Lett. 2008, 126 (3-4), 275-279.
https://doi.org/10.1007/s10562-008-9603-5

[91]. Dinparast, L.; Valizadeh, H. Iranian J. Org. Chem. 2014, 6 (3), 1341-1345.

[92]. Safaei-Ghomi, J.; Babaei, P.; Shahbazi-Alavi, H.; Zahedi, S. J. Saudi Chem. Soc. 2017, 21 (8), 929-937.
https://doi.org/10.1016/j.jscs.2016.01.003

[93]. Gandhi, D.; Agarwal, S. J. Heterocyclic Chem. 2018, 55 (12), 2977-2984.
https://doi.org/10.1002/jhet.3384

[94]. Ansari, A.; Ali, A.; Asif, M.; Shamsuzzaman, S. New J. Chem. 2018, 42 (1), 184-19.
https://doi.org/10.1039/C7NJ03742B

[95]. Mirzaei, H.; Davoodnia, A. Chinese J. Catal. 2012, 33 (9-10), 1502-1507.
https://doi.org/10.1016/S1872-2067(11)60431-2

[96]. Beyzaei, H.; Kooshki, S.; Aryan, R.; Zahedi, M. M.; Samzadeh-Kermani, A.; Ghasemi, B.; Moghaddam-Manesh, M. Appl. Biochem. Biotechnol. 2017, 184 (1), 291-302.
https://doi.org/10.1007/s12010-017-2544-y

[97]. Naeimi, H.; Alishahi, N. J. Exp. Nanosci. 2013, 10 (3), 222-234.
https://doi.org/10.1080/17458080.2013.822575

[98]. Beyzaei, H.; Aryan, R.; Molashahi, H.; Zahedi, M. M.; Samzadeh-Kermani, A.; Ghasemi, B.; Moghaddam-Manesh, M. J. Iran Chem. Soc. 2017, 14 (5), 1023-1031.
https://doi.org/10.1007/s13738-017-1052-x

[99]. Baharfar, R.; Shariati, N. C. R. Chimie 2014, 17 (5), 413-419.
https://doi.org/10.1016/j.crci.2013.08.010

[100]. Shariati, N.; Baharfar, R. J. Chinese Chem. Soc. 2013, 61 (3), 337-340.
https://doi.org/10.1002/jccs.201300425

[101]. Naeimi, H.; Rashid, Z.; Zarnani, A. H.; Ghahremanzadeh, R. J. Nanopart. Res. 2014, 16 (5), 2416.
https://doi.org/10.1007/s11051-014-2416-0

[102]. Kiyani, H.; Ghorbani, F. Res. Chem. Intermed. 2016, 42 (9), 6831-6844.
https://doi.org/10.1007/s11164-016-2498-7

[103]. Hamood Saleh Azzam, S.; Chandrappa, G. T.; Afzal Pasha, M. Lett. Org. Chem. 2013, 10 (4), 283-290.
https://doi.org/10.2174/1570178611310040010

[104]. Das, V. K.; Devi, R. R.; Thakur, A. J. Appl. Catal. A 2013, 456, 118-125.
https://doi.org/10.1016/j.apcata.2013.02.016

[105]. Gajengi, A. L.; Sasaki, T.; Bhanage, B. M. Adv. Powder Technol. 2017, 28 (4), 1185-1192.
https://doi.org/10.1016/j.apt.2017.02.004

[106]. Babaie, M.; Sheibani, H. Arabian J. Chem. 2011, 4 (2), 159-162.
https://doi.org/10.1016/j.arabjc.2010.06.032

[107]. Sojoudi, M.; Mokhtary, M. Iran. Chem. Commun. 2018, 6 (2), 125-133.

[108]. Safaei-Ghomi, J.; Zahedi, S.; Javid, M.; Ghasemzadeh, M. A. J. Nanostruc. 2015, 5 (2), 153-160.

[109]. Choudary, B. M.; Mulukutla, R. S.; Klabunde, K. J. J. Am. Chem. Soc. 2003, 125 (8), 2020-2021.
https://doi.org/10.1021/ja0211757

[110]. Wang, F.; Ta, N.; Shen, W. Appl. Catal. A 2014, 475, 76-81.
https://doi.org/10.1016/j.apcata.2014.01.026

[111]. Zarnegar, Z.; Safari, J. J. Exp. Nanosci. 2014, 10 (9), 651-661.
https://doi.org/10.1080/17458080.2013.869842


How to cite


Dabhane, H.; Ghotekar, S.; Tambade, P.; Pansambal, S.; Oza, R.; Medhane, V. Eur. J. Chem. 2021, 12(1), 86-108. doi:10.5155/eurjchem.12.1.86-108.2060
Dabhane, H.; Ghotekar, S.; Tambade, P.; Pansambal, S.; Oza, R.; Medhane, V. MgO nanoparticles: Synthesis, characterization, and applications as a catalyst for organic transformations. Eur. J. Chem. 2021, 12(1), 86-108. doi:10.5155/eurjchem.12.1.86-108.2060
Dabhane, H., Ghotekar, S., Tambade, P., Pansambal, S., Oza, R., & Medhane, V. (2021). MgO nanoparticles: Synthesis, characterization, and applications as a catalyst for organic transformations. European Journal of Chemistry, 12(1), 86-108. doi:10.5155/eurjchem.12.1.86-108.2060
Dabhane, Harshal, Suresh Ghotekar, Pawan Tambade, Shreyas Pansambal, Rajeshwari Oza, & Vijay Medhane. "MgO nanoparticles: Synthesis, characterization, and applications as a catalyst for organic transformations." European Journal of Chemistry [Online], 12.1 (2021): 86-108. Web. 17 Jun. 2021
Dabhane, Harshal, Ghotekar, Suresh, Tambade, Pawan, Pansambal, Shreyas, Oza, Rajeshwari, AND Medhane, Vijay. "MgO nanoparticles: Synthesis, characterization, and applications as a catalyst for organic transformations" European Journal of Chemistry [Online], Volume 12 Number 1 (31 March 2021)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.12.1.86-108.2060

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2021, 12(1), 86-108 | doi: https://doi.org/10.5155/eurjchem.12.1.86-108.2060 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2021  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2021 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.