

MgO nanoparticles: Synthesis, characterization, and applications as a catalyst for organic transformations
Harshal Dabhane (1)






(1) Department of Chemistry, Guruvarya Mamasaheb Dandekar Arts, Bhagwantrao Waje Commerce and Science College, Sinnar, Nashik, Affiliated to Savitribai Phule Pune University, Pune, Maharashtra, 422 103, India
(2) Department of Chemistry, Sangamner Nagarpalika Arts, Damodar Jagannath Malpani Commerce and Bastiram Narayandas Sarda Science College, Sangamner, Affiliated to Savitribai Phule Pune University, Maharashtra, 422 605 India
(3) Department of Chemistry, Karmaveer Kakasaheb Wagh Arts, Science and Commerce College, Pimpalgaon (B), Nashik, Affiliated to Savitribai Phule Pune University, Maharashtra, 422 209 India
(4) Department of Chemistry, Sangamner Nagarpalika Arts, Damodar Jagannath Malpani Commerce and Bastiram Narayandas Sarda Science College, Sangamner, Affiliated to Savitribai Phule Pune University, Maharashtra, 422 605 India
(5) Department of Chemistry, Sangamner Nagarpalika Arts, Damodar Jagannath Malpani Commerce and Bastiram Narayandas Sarda Science College, Sangamner, Affiliated to Savitribai Phule Pune University, Maharashtra, 422 605 India
(6) Department of Chemistry, Karmaveer Raosaheb Thorat Arts, Bhausaheb Hiray Commerce & Annasaheb Murkute Science College (KTHM College), Nashik, Affiliated to Savitribai Phule Pune University, Pune Maharashtra, 422002 India
(*) Corresponding Author
Received: 06 Jan 2021 | Revised: 19 Feb 2021 | Accepted: 20 Feb 2021 | Published: 31 Mar 2021 | Issue Date: March 2021
Abstract
Currently, the size and shape selective synthesis of nanoparticles (NPs) and their varied catalytic applications are gaining significant enthusiasm in the field of nanochemistry. Homogeneous catalysis is crucial due to its inherent benefits like high selectivity and mild reaction conditions. Nevertheless, it endures with serious disadvantages of catalysts and/or product separation/recycles compared to their heterogeneous counterparts restricting their catalytic applications. The utilization of catalysts in the form of nano-size is an elective methodology for the combination of merits of homogeneous and heterogeneous catalysis. Magnesium oxide (MgO) NPs are important as they find applications for catalysis, organic transformation, and synthesis of fine chemicals and organic intermediates. The applications of MgO NPs in diverse organic transformations including oxidation, reduction, epoxidation, condensation, and C-C, C-N, C-O, C-S bond formation in a variety of notable heterocyclic reactions are also discussed. The use of MgO NPs in organic transformation is advantageous as it mitigates the use of ligands; the procurable separation of catalyst for recyclability makes the protocol heterogeneous and monetary. MgO NPs gave efficacious catalytic performance towards the desired products due to high surface area. By considering these efficient merits, scientists have focused their attentions towards stupendous applications of MgO NPs in selective organic transformation. In the current review article, we summarized the synthesis of MgO NPs and numerous characterization techniques, whereas the application section illustrates their utility as a catalyst in several organic transformations. We believe this decisive appraisal will provide imperative details to further advance the application of MgO NPs in selective catalysis.
Announcements
Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.
1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization or a DFT study between September 15, 2023 and October 31, 2023 (Voucher code: FALL2023).
2. A 50% discount will be applied to the article processing fee for submissions made between September 15, 2023 and October 31, 2023 by authors who have at least one publication in the European Journal of Chemistry (Voucher code: AUTHOR-3-2023).
3. Young writers will not be charged for the article processing fee between September 15, 2023 and October 31, 2023 (Voucher code: YOUNG2023).
Editor-in-Chief
European Journal of Chemistry
Keywords
Full Text:
PDF

DOI: 10.5155/eurjchem.12.1.86-108.2060
Links for Article
| | | | | | |
| | | | | | |
| | | |
Related Articles
Article Metrics


Citations
[1]. Valeria Palermo, Jhoan M. Camargo López, María H. Brijaldo, Sergio Acevedo, Sonia Mancipe, Juan‐Carlos Castillo, Hugo A. Rojas, Fabio B. Passos, Gustavo P. Romanelli, José J. Martínez
Biochar‐MgO from Soursop Seeds in the Production of Biofuel Additive Intermediates
ChemPlusChem 88(11), , 2023
DOI: 10.1002/cplu.202300401

[2]. Hosseinali Hassanzadeh, Amin Salem, Shiva Salem
Application of ultrasound-assisted technique for production of mesoporous magnesium oxide from solid waste of ductile iron: An alternative method for elimination of surfactants from precipitation process
Materials Today Communications 37, 107121, 2023
DOI: 10.1016/j.mtcomm.2023.107121

[3]. Shams Tabrez, Azhar U. Khan, Mehboob Hoque, Mohd Suhail, Mohammad Imran Khan, Torki A. Zughaibi
Investigating the anticancer efficacy of biogenic synthesized MgONPs: An in vitro analysis
Frontiers in Chemistry 10, , 2022
DOI: 10.3389/fchem.2022.970193

[4]. Vishal Dutta, Ritesh Verma, C. Gopalkrishnan, Min-Hao Yuan, Khalid Mujasam Batoo, R. Jayavel, Ankush Chauhan, Kun-Yi Andrew Lin, Ravindran Balasubramani, Suresh Ghotekar
Bio-Inspired Synthesis of Carbon-Based Nanomaterials and Their Potential Environmental Applications: A State-of-the-Art Review
Inorganics 10(10), 169, 2022
DOI: 10.3390/inorganics10100169

[5]. Muhammad Yahya Tahir, Mika Sillanpaa, Tahani Mazyad Almutairi, Abdallah A.A. Mohammed, Shafaqat Ali
Excellent photocatalytic and antibacterial activities of bio-activated carbon decorated magnesium oxide nanoparticles
Chemosphere 312, 137327, 2023
DOI: 10.1016/j.chemosphere.2022.137327

[6]. Dnyaneshwar Sanap, Lata Avhad, Suresh Ghotekar, Nitin D. Gaikwad
Green synthesis and characterization of mixed-phase Fe2O3 nanorods as a novel magnetically recoverable heterogeneous catalyst for Biginelli synthesis
Journal of Molecular Structure 1283, 135246, 2023
DOI: 10.1016/j.molstruc.2023.135246

[7]. H. S. Lalithamba, H. K. E. Latha, N. Narendra, S. Mala
Green Synthesis, Structural, Electrical and Catalytic Properties of Nano-MgO
Journal of Electronic Materials 53(1), 30, 2024
DOI: 10.1007/s11664-023-10779-y

[8]. Putusenla Imchen, Betokali K Zhimomi, Toka Swu, Tovishe Phucho
Clerodendrum colebrookianum extract mediated synthesis of AgNPs and its effective application as a sustainable catalyst for Oxazine transformation in neat condition and antibacterial activity.
Chemical Physics Impact 5, 100131, 2022
DOI: 10.1016/j.chphi.2022.100131

[9]. S. Vijayakumar, M. Nilavukkarasi, P. K. Praseetha
Synthesis of MgO nanoparticles through green method and evaluation of its antimicrobial activities
Vegetos 34(3), 719, 2021
DOI: 10.1007/s42535-021-00247-5

[10]. Harshal Dabhane, Suresh Ghotekar, Pawan Tambade, Shreyas Pansambal, H.C. Ananda Murthy, Rajeshwari Oza, Vijay Medhane
A review on environmentally benevolent synthesis of CdS nanoparticle and their applications
Environmental Chemistry and Ecotoxicology 3, 209, 2021
DOI: 10.1016/j.enceco.2021.06.002

[11]. Muhammad Irfan Jahanger, Naveed Akhtar Shad, Muhammad Munir Sajid, Kanwal Akhtar, Yasir Javed, Asmat Ullah, Muhammad Aamir Hassan, Muhammad Haroon Sarwar, Muhammad Sarwar, Mika Sillanpää
Aqueous photodegradation of methyl orange and antimicrobial activity against E. coli and S. aureus bacteria using pH modified MgO nanomaterials
Reaction Kinetics, Mechanisms and Catalysis 135(1), 499, 2022
DOI: 10.1007/s11144-021-02145-y

[12]. Geun-Hyoung Lee
Effect of Oxygen Concentration on the Growth and Cathodoluminescence Properties of MgO Nanowires
Korean Journal of Metals and Materials 61(7), 509, 2023
DOI: 10.3365/KJMM.2023.61.7.509

[13]. Sonia Mancipe, Valentina Coca, Juan-Carlos Castillo, Hugo Rojas, María Helena Brijaldo, Claudia Castañeda, José Jobanny Martínez, Gustavo Pablo Romanelli
Synthesis of acrylonitrile functionalized hydroxymethylfurfural derivatives with Mg(OH) 2 under solvent-free conditions
Comptes Rendus. Chimie 26(G1), 77, 2023
DOI: 10.5802/crchim.239

[14]. Cevher Kürşat MACİT, Cihan ÖZEL, Turan GÜRGENÇ
Sol-Jel Yöntemiyle Sentezlenen Magnezyum Oksit ve Kadmiyum Oksit Nanoparçacıkların Yapısal ve Morfolojik Özelliklerinin İncelenmesi
Fırat Üniversitesi Mühendislik Bilimleri Dergisi 35(2), 911, 2023
DOI: 10.35234/fumbd.1288270

[15]. Harshal A. Dabhane, Manohar K. Zate, Anil Kalyankar, Suresh Ghotekar, Ghanshyam R. Jadhav, Vijay J. Medhane
Development of photoactive MgO nanoflakes using the sol–gel method for the removal of organic contaminants
Journal of Sol-Gel Science and Technology 105(2), 537, 2023
DOI: 10.1007/s10971-022-05997-5

[16]. Harshal Dabhane, Suresh Ghotekar, Manohar Zate, Sagar Kute, Ghanshyam Jadhav, Vijay Medhane
Green synthesis of MgO nanoparticles using aqueous leaf extract of Ajwain (Trachyspermum ammi) and evaluation of their catalytic and biological activities
Inorganic Chemistry Communications 138, 109270, 2022
DOI: 10.1016/j.inoche.2022.109270

[17]. Shreyas Pansambal, Rajeshwari Oza, Seema Borgave, Ankush Chauhan, Pranav Bardapurkar, Shweta Vyas, Suresh Ghotekar
Bioengineered cerium oxide (CeO2) nanoparticles and their diverse applications: a review
Applied Nanoscience 13(9), 6067, 2023
DOI: 10.1007/s13204-022-02574-8

[18]. H. S. Lalithamba, K. Divyarani, S. Sreenivasa, T. Madhu Chakrapani Rao
Green Synthesis of MgO Nanoparticles Using Caesalpinia Sappan Seeds and their Application for Direct Conversion of Alcohol to Azide
Journal of Mines, Metals and Fuels , 70, 2022
DOI: 10.18311/jmmf/2022/32012

[19]. Seham S. Alterary, Maha F. El-Tohamy, Gamal A. E. Mostafa, Haitham Alrabiah
Atropine-Phosphotungestate Polymeric-Based Metal Oxide Nanoparticles for Potentiometric Detection in Pharmaceutical Dosage Forms
Nanomaterials 12(13), 2313, 2022
DOI: 10.3390/nano12132313

[20]. Dana A. Kader, Srood Omer Rashid
Regioselective direct thiocyanation of anilines and phenols using novel hybrid nanocatalyst (MgONPs@VCA) under visible light induced photoredox catalysis
Molecular Catalysis 547, 113409, 2023
DOI: 10.1016/j.mcat.2023.113409

References
[1]. Gawande, M. B.; Goswami, A.; Felpin, F.-X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R. S. Chem. Rev. 2016, 116 (6), 3722-3811.
https://doi.org/10.1021/acs.chemrev.5b00482
[2]. Ghotekar, S.; Dabhane, H.; Pansambal, S.; Oza, R.; Tambade, P.; Medhane, V. Adv. J. Chem. B 2020, 2 (3), 102-111.
[3]. Sinha, T.; Ahmaruzzaman, Md.; Adhikari, P. P.; Bora, R. ACS Sustainable Chem. Eng. 2017, 5 (6), 4645-4655.
https://doi.org/10.1021/acssuschemeng.6b03114
[4]. Dabhane, H. A.; Ghotekar, S.; Tambade, P. J.; Medhane, V. J. Asian J. Nanosci. Mater. 2020, 3 (4), 291-299.
[5]. Tarannum, N.; Divya, D.; Gautam, Y. K. RSC Adv. 2019, 9 (60), 34926-34948.
https://doi.org/10.1039/C9RA04164H
[6]. Nikam, A.; Pagar, T.; Ghotekar, S.; Pagar, K.; Pansambal, S. J. Chem. Rev. 2019, 1 (3), 154-163.
[7]. Nasrollahzadeh, M.; Ghorbannezhad, F.; Issaabadi, Z.; Sajadi, S. M. Chem. Rec. 2018, 19 (2-3), 601-643.
https://doi.org/10.1002/tcr.201800069
[8]. Bhatte, K. D.; Tambade, P. J.; Dhake, K. P.; Bhanage, B. M. Catalysis Commun. 2010, 11 (15), 1233-1237.
https://doi.org/10.1016/j.catcom.2010.06.011
[9]. Nasrollahzadeh, M.; Sajjadi, M.; Dadashi, J.; Ghafuri, H. Adv. Colloid Interface Sci. 2020, 276, 102103.
https://doi.org/10.1016/j.cis.2020.102103
[10]. Ghotekar, S.; Pansambal, S.; Pawar, S. P.; Pagar, T.; Oza, R.; Bangale, S. SN Appl. Sci. 2019, 1 (11), 1342.
https://doi.org/10.1007/s42452-019-1389-0
[11]. Ahmed, S.; Annu; Ikram, S.; Yudha S., S. J. Photochem. Photobiol. B: Biol. 2016, 161, 141-153.
https://doi.org/10.1016/j.jphotobiol.2016.04.034
[12]. Pansambal, S.; Ghotekar, S.; Shewale, S.; Deshmukh, K.; Barde, N.; Bardapurkar, P. J. Water. Environ. Nanotechnol. 2019, 4 (3), 174-186.
[13]. Pilarska, A. A.; Klapiszewski, Ł.; Jesionowski, T. Powder Techn. 2017, 319, 373-407.
https://doi.org/10.1016/j.powtec.2017.07.009
[14]. Mirtalebi, S. S.; Almasi, H.; Alizadeh Khaledabad, M. Inter. J. Bio. Macromolec. 2019, 128, 848-857.
https://doi.org/10.1016/j.ijbiomac.2019.02.007
[15]. Dobrucka, R. Iran J. Sci. Technol. Trans. Sci. 2016, 42 (2), 547-555.
https://doi.org/10.1007/s40995-016-0076-x
[16]. Wu, C. C.; Cao, X.; Wen, Q.; Wang, Z.; Gao, Q.; Zhu, H. Talanta 2009, 79 (5), 1223-1227.
https://doi.org/10.1016/j.talanta.2009.04.038
[17]. Hashim, A.; Hadi, A. Ukr. J. Phys. 2017, 62 (12), 1050-1056.
https://doi.org/10.15407/ujpe62.12.1050
[18]. Krishnamoorthy, K.; Moon, J. Y.; Hyun, H. B.; Cho, S. K.; Kim, S. J. J. Mater. Chem. 2012, 22 (47), 24610-24617.
https://doi.org/10.1039/c2jm35087d
[19]. Jhansi, K.; Jayarambabu, N.; Reddy, K. P.; Reddy, N. M.; Suvarna, R. P.; Rao, K. V.; Kumar, V. R.; Rajendar, V. Biotech. 2017, 7 (4), 263-274.
https://doi.org/10.1007/s13205-017-0894-3
[20]. Roy, B.; Roy, A. S.; Panda, A. B.; Islam, Sk. M.; Chattopadhyay, A. P. Chem. Select 2016, 1 (15), 4778-4784.
https://doi.org/10.1002/slct.201600380
[21]. Nijalingappa, T. B.; Veeraiah, M. K.; Basavaraj, R. B.; Darshan, G. P.; Sharma, S. C.; Nagabhushana, H. Biocatal. Agricul. Biotechn. 2019, 18, 100991.
https://doi.org/10.1016/j.bcab.2019.01.029
[22]. Raveesha, H. R.; Nayana, S.; Vasudha, D. R.; Begum, J. P. S.; Pratibha, S.; Ravikumara, C. R.; Dhananjaya, N. J. Sci. Adv. Mater. Dev. 2019, 4 (1), 57-65.
https://doi.org/10.1016/j.jsamd.2019.01.003
[23]. Karthik, K.; Dhanuskodi, S.; Prabu Kumar, S.; Gobinath, C.; Sivaramakrishnan, S. Mater. Lett. 2017, 206, 217-220.
https://doi.org/10.1016/j.matlet.2017.07.004
[24]. HiHill, M. R.; Jones, A. W.; Russell, J. J.; Roberts, N. K.; Lamb, R. N. J. Mater. Chem. 2004, 14 (21), 3198 -3202.
https://doi.org/10.1039/b405816j
[25]. Tamilselvi, P.; Yelilarasi, A.; Hema, M.; Anbarasan, R. Nano Bull. 2013, 2 (1), 130106.
[26]. Bian, S.-W.; Baltrusaitis, J.; Galhotra, P.; Grassian, V. H. J. Mater. Chem. 2010, 20 (39), 8705 -8710.
https://doi.org/10.1039/c0jm01261k
[27]. Rao, K. G.; Ashok, C. H.; Rao, K. V.; Chakra, C. S. Inter. J. Sci. Res. 2014, 3 (12), 43-46.
[28]. Li, S.; Zhou, B.; Ren, B.; Xing, L.; Tan, L.; Dong, L.; Li, J. Mater. Lett. 2016, 171, 204-207.
https://doi.org/10.1016/j.matlet.2016.02.048
[29]. Samodi, A.; Rashidi, A.; Marjani, K.; Ketabi, S. Mater. Lett. 2013, 109, 269-274.
https://doi.org/10.1016/j.matlet.2013.07.085
[30]. Yousefi, S.; Ghasemi, B.; Tajally, M.; Asghari, A. J. Alloys Comp. 2017, 711, 521-529.
https://doi.org/10.1016/j.jallcom.2017.04.036
[31]. Darvishi Cheshmeh Soltani, R.; Safari, M.; Mashayekhi, M. Ultrasonics Sonochem. 2016, 30, 123-131.
https://doi.org/10.1016/j.ultsonch.2015.11.018
[32]. Makhluf, S.; Dror, R.; Nitzan, Y.; Abramovich, Y.; Jelinek, R.; Gedanken, A. Adv. Funct. Mater. 2005, 15 (10), 1708-1715.
https://doi.org/10.1002/adfm.200500029
[33]. Hadia, N. M. A.; Mohamed, H. A. H. Mater. Sci. Semicond. Proces. 2015, 29, 238-244.
https://doi.org/10.1016/j.mssp.2014.03.049
[34]. Ding, Y.; Zhang, G.; Wu, H.; Hai, B.; Wang, L.; Qian, Y. Chem. Mater. 2001, 13 (2), 435-440.
https://doi.org/10.1021/cm000607e
[35]. Nemade, K. R.; Waghuley, S. A. Inter. J. Metals 2014, 2014, 1-4.
https://doi.org/10.1155/2014/389416
[36]. Abdul-Ameer, Z. N. Adv. Nat. Appl. Sci. 2016, 10 (12), 72-76.
[37]. Rao, K. V.; Sunandana, C. S. J. Mater. Sci. 2007, 43 (1), 146-154.
https://doi.org/10.1007/s10853-007-2131-7
[38]. Chen, H.; Luo, Z.; Chen, X.; Kang, F. Micro Nano Lett. 2017, 12 (1), 27-29.
https://doi.org/10.1049/mnl.2016.0549
[39]. Subramania, A.; Kumar, G. V.; Priya, A. R. S.; Vasudevan, T. Nanotechn. 2007, 18 (22), 225601.
https://doi.org/10.1088/0957-4484/18/22/225601
[40]. Mageshwari, K.; Mali, S. S.; Sathyamoorthy, R.; Patil, P. S. Powder Technol. 2013, 249, 456-462.
https://doi.org/10.1016/j.powtec.2013.09.016
[41]. Ganguly, A.; Trinh, P.; Ramanujachary, K. V.; Ahmad, T.; Mugweru, A.; Ganguli, A. K. J. Colloid Interface Sci. 2011, 353 (1), 137-142.
https://doi.org/10.1016/j.jcis.2010.09.041
[42]. Phuoc, T. X.; Howard, Bret. H.; Martello, D. V.; Soong, Y.; Chyu, M. K. Optics Lasers Eng. 2008, 46 (11), 829-834.
https://doi.org/10.1016/j.optlaseng.2008.05.018
[43]. Smovzh, D. V.; Sakhapov, S. Z.; Zaikovskii, A. V.; Chernova, S. A.; Novopashin, S. A. Ceramics Inter. 2019, 45 (6), 7338-7343.
https://doi.org/10.1016/j.ceramint.2019.01.017
[44]. Yang, Q.; Sha, J.; Wang, L.; Wang, J.; Yang, D. Mater. Sci. Eng. C 2006, 26 (5-7), 1097-1101.
https://doi.org/10.1016/j.msec.2005.09.082
[45]. Chae, S.; Lee, H.; Pikhitsa, P. V.; Kim, C.; Shin, S.; Kim, D. H.; Choi, M. Powder Technol. 2017, 305, 132-140.
https://doi.org/10.1016/j.powtec.2016.09.057
[46]. Ismail, R. A.; Mousa, A. M.; Shaker, S. S. Mater. Res. Express 2019, 6 (7), 075007.
https://doi.org/10.1088/2053-1591/ab1208
[47]. Essien, E. R.; Atasie, V. N.; Okeafor, A. O.; Nwude, D. O. Int. Nano. Lett. 2019, 10 (1), 43-48.
https://doi.org/10.1007/s40089-019-00290-w
[48]. Ogunyemi, S. O.; Zhang, F.; Abdallah, Y.; Zhang, M.; Wang, Y.; Sun, G.; Qiu, W.; Li, B. Artific. Cells, Nanomed. Biotechnol. 2019, 47 (1), 2230-2239.
https://doi.org/10.1080/21691401.2019.1622552
[49]. Joghee, S.; Ganeshan, P.; Vincent, A.; Hong, S. I. Bio. Nano Sci. 2018, 9 (1), 141-154.
https://doi.org/10.1007/s12668-018-0573-9
[50]. Jeevanandam, J.; Chan, Y. S.; Danquah, M. K. New J. Chem. 2017, 41 (7), 2800-2814.
https://doi.org/10.1039/C6NJ03176E
[51]. Anil Kumar, M. R.; Nagaswarupa, H. P.; Anantharaju, K. S.; Gurushantha, K.; Pratapkumar, C.; Prashantha, S. C.; Shashishekar, T. R.; Nagabhushana, H.; Sharma, S. C.; Vidya, Y. S.; Daruka Prasad, B.; Vivek Babu, C. S.; Vishnu Mahesh, K. R. Mater. Res. Express 2015, 2 (9), 095004.
https://doi.org/10.1088/2053-1591/2/9/095004
[52]. Das, B.; Moumita, S.; Ghosh, S.; Khan, M. I.; Indira, D.; Jayabalan, R.; Tripathy, S. K.; Mishra, A.; Balasubramanian, P. Mater. Sci. Eng. C 2018, 91, 436-444.
https://doi.org/10.1016/j.msec.2018.05.059
[53]. Verma, S. K.; Nisha, K.; Panda, P. K.; Patel, P.; Kumari, P.; Mallick, M. A.; Sarkar, B.; Das, B. Sci. Total Environ. 2020, 713, 136521.
https://doi.org/10.1016/j.scitotenv.2020.136521
[54]. Oladipo, A. A.; Adeleye, O. J.; Oladipo, A. S.; Aleshinloye, A. O. J. Water Process Eng. 2017, 16, 142-148.
https://doi.org/10.1016/j.jwpe.2017.01.003
[55]. Essien, E. R.; Atasie, V. N.; Oyebanji, T. O.; Nwude, D. O. Chem. Pap. 2020, 74 (7), 2101-2109.
https://doi.org/10.1007/s11696-020-01056-x
[56]. John Sushma, N.; Prathyusha, D.; Swathi, G.; Madhavi, T.; Deva Prasad Raju, B.; Mallikarjuna, K.; Kim, H. S. Appl. Nanosci. 2015, 6 (3), 437-44.
https://doi.org/10.1007/s13204-015-0455-1
[57]. Suresh, J.; Pradheesh, G.; Alexramani, V.; Sundrarajan, M.; Hong, S. I. Adv. Powder Technol. 2018, 29 (7), 1685-1694.
https://doi.org/10.1016/j.apt.2018.04.003
[58]. Jain, A.; Wadhawan, S.; Kumar, V.; Mehta, S. K. Chem. Phys. Lett. 2018, 706, 53-61.
https://doi.org/10.1016/j.cplett.2018.05.069
[59]. Mohanasrinivasan, V.; Subathra Devi, C.; Mehra, A.; Prakash, S.; Agarwal, A.; Selvarajan, E.; Jemimah Naine, S. Bio. Nano Sci. 2017, 8 (1), 249-253.
https://doi.org/10.1007/s12668-017-0480-5
[60]. Abdel-Aziz, M. M.; Emam, T. M.; Elsherbiny, E. A. Mater. Sci. Eng. C 2020, 109, 110617.
https://doi.org/10.1016/j.msec.2019.110617
[61]. Raliya, R.; Tarafdar, J. C.; Choudhary, K.; Mal, P.; Raturi, A.; Gautam, R.; Singh, S. K. J. Bionanosci. 2014, 8 (1), 34-3.
https://doi.org/10.1166/jbns.2014.1195
[62]. Ibrahem, E.; Thalij, K.; Badawy, A. Biotechnol. J. Intern. 2017, 18 (1), 1-7.
https://doi.org/10.9734/BJI/2017/29534
[63]. El-Sayyad, G. S.; Mosallam, F. M.; El-Batal, A. I. Adv. Powder Technol. 2018, 29 (11), 2616-2625.
https://doi.org/10.1016/j.apt.2018.07.009
[64]. Sutradhar, N.; Sinhamahapatra, A.; Pahari, S. K.; Pal, P.; Bajaj, H. C.; Mukhopadhyay, I.; Panda, A. B. J. Phys. Chem. C 2011, 115 (25), 12308-12316.
https://doi.org/10.1021/jp2022314
[65]. Holzwarth, U.; Gibson, N. Nature Nanotech. 2011, 6 (9), 534-534.
https://doi.org/10.1038/nnano.2011.145
[66]. Yerragunta, V.; Kumaraswamy, T.; Suman, D.; Anusha, V.; Patil, P.; Samhitha, T. Pharma Tutor. 2013, 1 (2), 54-59.
[67]. Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chem. Rev. 2017, 117 (12), 7762-7810.
https://doi.org/10.1021/acs.chemrev.7b00020
[68]. Jung, J.-C.; Lee, Y.; Min, D.; Jung, M.; Oh, S. Molecules 2017, 22 (11), 187.
https://doi.org/10.3390/molecules22111872
[69]. Patil, A. B.; Bhanage, B. M. Catalysis Commun. 2013, 36, 79-83.
https://doi.org/10.1016/j.catcom.2013.03.012
[70]. Bain, S. W.; Ma, Z.; Cui, Z. M.; Zhang, L. S.; Niu, F.; Song, W. G. J. Phys. Chem. C 2008, 112 (30), 11340-11344.
https://doi.org/10.1021/jp802863j
[71]. Jadhav, A. H.; Prasad, D.; Jadhav, H. S.; Nagaraja, B. M.; Seo, J. G. Energy 2018, 160, 635-647.
https://doi.org/10.1016/j.energy.2018.07.036
[72]. Choudary, B. M.; Kantam, M. L.; Ranganath, K. V. S.; Mahendar, K.; Sreedhar, B. J. Am. Chem. Soc. 2004, 126 (11), 3396-3397.
https://doi.org/10.1021/ja038954n
[73]. Roy, S.; Pericas, M. A. Org. Biomol. Chem. 2009, 7 (13), 2669-2677.
https://doi.org/10.1039/b903921j
[74]. Vidruk, R.; Landau, M. V.; Herskowitz, M.; Talianker, M.; Frage, N.; Ezersky, V.; Froumin, N. J. Catal. 2009, 263 (1), 196-204.
https://doi.org/10.1016/j.jcat.2009.02.014
[75]. Choudary, B. M.; Chakrapani, L.; Ramani, T.; Kumar, K. V.; Kantam, M. L. D. Tetrahedron 2006, 62 (41), 9571-9576.
https://doi.org/10.1016/j.tet.2006.07.091
[76]. Choudary, B. M.; Ranganath, K. V. S.; Pal, U.; Kantam, M. L.; Sreedhar, B. J. Am. Chem. Soc. 2005, 127 (38), 13167-13171.
https://doi.org/10.1021/ja0440248
[77]. Tajbakhsh, M.; Farhang, M.; Hosseini, A. J. Iran Chem. Soc. 2013, 11 (3), 665-672.
https://doi.org/10.1007/s13738-013-0338-x
[78]. Hosseini-Sarvari, M.; Parhizgar, G. Org. Chem. Res. 2016, 2 (2), 177-191.
[79]. Mashayekh-Salehi, A.; Moussavi, G.; Yaghmaeian, K. Chem. Eng. J. 2017, 310, 157-169.
https://doi.org/10.1016/j.cej.2016.10.096
[80]. Mohammadi, L.; Bazrafshan, E.; Noroozifar, M.; Ansari-Moghaddam, A.; Barahuie, F.; Balarak, D. Water Sci. Technol. 2017, 76 (11), 3054-3068.
https://doi.org/10.2166/wst.2017.479
[81]. Safari, J.; Zarnegar, Z.; Heydarian, M. J. Taibah Univ. Sci. 2013, 7 (1), 17-25.
https://doi.org/10.1016/j.jtusci.2013.03.001
[82]. Ghashang, M.; Mansoor, S. S.; Mohammad Shafiee, M. R.; Kargar, M.; Najafi Biregan, M.; Azimi, F.; Taghrir, H. J. Sulfur Chem. 2016, 37 (4), 377-390.
https://doi.org/10.1080/17415993.2016.1149856
[83]. Brahmachari, G.; Laskar, S. Phosphorus Sulfur Silicon Relat. Elem. 2014, 189 (7-8), 873-888.
https://doi.org/10.1080/10426507.2014.903484
[84]. Kumar, D.; Reddy, V. B.; Mishra, B. G.; Rana, R. K.; Nadagouda, M. N.; Varma, R. S. Tetrahedron 2007, 63 (15), 3093-3097.
https://doi.org/10.1016/j.tet.2007.02.019
[85]. Kumar, D.; Reddy, V. B.; Sharad, S.; Dube, U.; Kapur, S. Eur. J. Med. Chem. 2009, 44 (9), 3805-3809.
https://doi.org/10.1016/j.ejmech.2009.04.017
[86]. Karmakar, B.; Nayak, A.; Banerji, J. Tetrahedron Lett. 2012, 53 (37), 5004-5007.
https://doi.org/10.1016/j.tetlet.2012.07.030
[87]. Moghaddam‐Manesh, M.; Ghazanfari, D.; Sheikhhosseini, E.; Akhgar, M. Chem. Select 2019, 4 (31), 9247-9251.
https://doi.org/10.1002/slct.201900935
[88]. Safaei-Ghomi, J.; Eshteghal, F.; Ghasemzadeh, M. A. Acta Chim. Slov. 2014, 61 (4), 703-708.
[89]. Mohammadzadeh, I.; Sheibani, H. Chinese Chem. Lett. 2012, 23 (12), 1327-1330.
https://doi.org/10.1016/j.cclet.2012.10.007
[90]. Seifi, M.; Sheibani, H. Catal. Lett. 2008, 126 (3-4), 275-279.
https://doi.org/10.1007/s10562-008-9603-5
[91]. Dinparast, L.; Valizadeh, H. Iranian J. Org. Chem. 2014, 6 (3), 1341-1345.
[92]. Safaei-Ghomi, J.; Babaei, P.; Shahbazi-Alavi, H.; Zahedi, S. J. Saudi Chem. Soc. 2017, 21 (8), 929-937.
https://doi.org/10.1016/j.jscs.2016.01.003
[93]. Gandhi, D.; Agarwal, S. J. Heterocyclic Chem. 2018, 55 (12), 2977-2984.
https://doi.org/10.1002/jhet.3384
[94]. Ansari, A.; Ali, A.; Asif, M.; Shamsuzzaman, S. New J. Chem. 2018, 42 (1), 184-19.
https://doi.org/10.1039/C7NJ03742B
[95]. Mirzaei, H.; Davoodnia, A. Chinese J. Catal. 2012, 33 (9-10), 1502-1507.
https://doi.org/10.1016/S1872-2067(11)60431-2
[96]. Beyzaei, H.; Kooshki, S.; Aryan, R.; Zahedi, M. M.; Samzadeh-Kermani, A.; Ghasemi, B.; Moghaddam-Manesh, M. Appl. Biochem. Biotechnol. 2017, 184 (1), 291-302.
https://doi.org/10.1007/s12010-017-2544-y
[97]. Naeimi, H.; Alishahi, N. J. Exp. Nanosci. 2013, 10 (3), 222-234.
https://doi.org/10.1080/17458080.2013.822575
[98]. Beyzaei, H.; Aryan, R.; Molashahi, H.; Zahedi, M. M.; Samzadeh-Kermani, A.; Ghasemi, B.; Moghaddam-Manesh, M. J. Iran Chem. Soc. 2017, 14 (5), 1023-1031.
https://doi.org/10.1007/s13738-017-1052-x
[99]. Baharfar, R.; Shariati, N. C. R. Chimie 2014, 17 (5), 413-419.
https://doi.org/10.1016/j.crci.2013.08.010
[100]. Shariati, N.; Baharfar, R. J. Chinese Chem. Soc. 2013, 61 (3), 337-340.
https://doi.org/10.1002/jccs.201300425
[101]. Naeimi, H.; Rashid, Z.; Zarnani, A. H.; Ghahremanzadeh, R. J. Nanopart. Res. 2014, 16 (5), 2416.
https://doi.org/10.1007/s11051-014-2416-0
[102]. Kiyani, H.; Ghorbani, F. Res. Chem. Intermed. 2016, 42 (9), 6831-6844.
https://doi.org/10.1007/s11164-016-2498-7
[103]. Hamood Saleh Azzam, S.; Chandrappa, G. T.; Afzal Pasha, M. Lett. Org. Chem. 2013, 10 (4), 283-290.
https://doi.org/10.2174/1570178611310040010
[104]. Das, V. K.; Devi, R. R.; Thakur, A. J. Appl. Catal. A 2013, 456, 118-125.
https://doi.org/10.1016/j.apcata.2013.02.016
[105]. Gajengi, A. L.; Sasaki, T.; Bhanage, B. M. Adv. Powder Technol. 2017, 28 (4), 1185-1192.
https://doi.org/10.1016/j.apt.2017.02.004
[106]. Babaie, M.; Sheibani, H. Arabian J. Chem. 2011, 4 (2), 159-162.
https://doi.org/10.1016/j.arabjc.2010.06.032
[107]. Sojoudi, M.; Mokhtary, M. Iran. Chem. Commun. 2018, 6 (2), 125-133.
[108]. Safaei-Ghomi, J.; Zahedi, S.; Javid, M.; Ghasemzadeh, M. A. J. Nanostruc. 2015, 5 (2), 153-160.
[109]. Choudary, B. M.; Mulukutla, R. S.; Klabunde, K. J. J. Am. Chem. Soc. 2003, 125 (8), 2020-2021.
https://doi.org/10.1021/ja0211757
[110]. Wang, F.; Ta, N.; Shen, W. Appl. Catal. A 2014, 475, 76-81.
https://doi.org/10.1016/j.apcata.2014.01.026
[111]. Zarnegar, Z.; Safari, J. J. Exp. Nanosci. 2014, 10 (9), 651-661.
https://doi.org/10.1080/17458080.2013.869842
How to cite
The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item
DOI Link: https://doi.org/10.5155/eurjchem.12.1.86-108.2060

















European Journal of Chemistry 2021, 12(1), 86-108 | doi: https://doi.org/10.5155/eurjchem.12.1.86-108.2060 | Get rights and content
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Authors

This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).
© Copyright 2010 - 2023 • Atlanta Publishing House LLC • All Right Reserved.
The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.
Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.