European Journal of Chemistry 2021, 12(2), 204-215 | doi: https://doi.org/10.5155/eurjchem.12.2.204-215.2088 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Synthesis, crystal structure with free radical scavenging activity and theoretical studies of Schiff bases derived from 1-naphthylamine, 2,6-diisopropylaniline, and substituted benzaldehyde


Segun Daniel Oladipo (1) orcid , Tunde Lewis Yusuf (2,*) orcid , Sizwe Joshua Zamisa (3) orcid , Gideon Femi Tolufashe (4) orcid , Kolawole Ayodapo Olofinsan (5) orcid , Zikhona Tywabi-Ngeva (6) orcid , Nonhlangabezo Mabuba (7) orcid

(1) School of Chemistry and Physics, University of KwaZulu-Natal, Westville campus, Private Bag X54001, Durban, 4000, South Africa
(2) Department of Chemical Sciences, University of Johannesburg, Doornfontein, P.O. BOX 17011, 2028 Johannesburg, South Africa
(3) School of Chemistry and Physics, University of KwaZulu-Natal, Westville campus, Private Bag X54001, Durban, 4000, South Africa
(4) Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
(5) Department of Biochemistry, Faculty of Natural and Applied Sciences, Nile University of Nigeria, Abuja, Nigeria
(6) Department of Chemistry, Faculty of Sciences, Nelson Mandela University, Port Elizabeth, 6000, South Africa
(7) Department of Chemical Sciences, University of Johannesburg, Doornfontein, P.O. BOX 17011, 2028 Johannesburg, South Africa
(*) Corresponding Author

Received: 27 Jan 2021 | Revised: 19 Mar 2021 | Accepted: 28 Mar 2021 | Published: 30 Jun 2021 | Issue Date: June 2021

Abstract


Three Schiff bases 1-(4-chlorophenyl)-N-(naphthalen-1-yl)methanimine (1), 1-(4-methoxy phenyl)-N-(naphthalen-1-yl)methanimine (2), and 1-(4-chlorophenyl)-N-(2,6-diisopropyl phenyl)methanimine (3) were synthesized and characterized by elemental analysis, 1H and 13C NMR, FT-IR and UV-Visible spectroscopic techniques. The crystal structure of compound 3 was obtained and it revealed that the compound crystallized in a monoclinic space group P21/n and there exists an intermolecular hydrogen bond in a phenyl-imine form with C-H⋯N. Crystal data for C19H22ClN: a = 7.28280(10) Å, b = 9.94270(10) Å, c = 24.0413(2) Å, β = 97.0120(10)°, = 1727.83(3) Å3, Z = 4, μ(Mo Kα) = 0.215 mm-1, Dcalc = 1.1526 g/cm3, 14038 reflections measured (12.42° ≤ 2Θ ≤ 52.74°), 3448 unique (Rint = 0.0223, Rsigma = 0.0182) which were used in all calculations. The final R1 was 0.0337 (I≥2u(I)) and wR2 was 0.0927 (all data). The free radical scavenging activities of all three compounds were assayed using DPPH, FRAP, and OH assays. According to results obtained, compound 2 shows effective DPPH- (IC50 = 22.69±0.14 μg/mL), FRAP+ (IC50 = 28.44±0.12 μg/mL), and OH- (IC50 = 27.97±0.16 μg/mL) scavenging activities compared with compounds 1 and 3 but less than standard antioxidant compound Trolox (TRO). Additionally, theoretical calculations for the three complexes were performed by using density functional theory (DFT) calculations at the B3LYP/6-31++G(2d,2p) level in the ground state to obtain an optimized geometrical structure and to perform an electronic, molecular electronic potential surface and natural bond orbital (NBO) analysis. The geometrical calculation obtained was found to be consistent with the experimental geometry. Further analysis was conducted using the in silico technique to predict the drug likeness, molecular and ADME properties of these molecules.


Announcements


One of our sponsors will cover the article processing fee for all submissions made between May 17, 2023 and May 31, 2023 (Voucher code: SPONSOR2023).

Editor-in-Chief
European Journal of Chemistry

Keywords


Synthesis; Schiff bases; Drug-likeness; Crystal structure; Antioxidant properties; Density functional theory

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.12.2.204-215.2088

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 1200 times | icon graph PDF Article downloaded 334 times

Funding information


The College of Agriculture, Science, and Engineering, the University of Kwazulu-Natal and the Center for High-Performance Computing (CHPC), South Africa.

Citations

/


[1]. Shu-Qin Qin, Wei Xu, Wen-Cai Ye, Ren-Wang Jiang
Structure determination of liquid molecules by encapsulation in an aromatic cavity with hydrogen bonding and enhanced C–H⋯π interactions
CrystEngComm  24(46), 8060, 2022
DOI: 10.1039/D2CE01033J
/


[2]. Segun D. Oladipo, Bernard Omondi
Pseudo-Tetrahedral Copper(I) Symmetrical Formamidine Dithiocarbamate-Phosphine Complexes: Antibacterial, Antioxidant and Pharmacokinetics Studies
Inorganics  10(6), 79, 2022
DOI: 10.3390/inorganics10060079
/


[3]. Ibrahim Waziri, Tunde L. Yusuf, Hauwa A. Zarma, Samson O. Oselusi, Louis-Charl C. Coetzee, Adedapo S. Adeyinka
New palladium (II) complexes from halogen substituted Schiff base ligands: Synthesis, spectroscopic, biological activity, density functional theory, and molecular docking investigations
Inorganica Chimica Acta  552, 121505, 2023
DOI: 10.1016/j.ica.2023.121505
/


[4]. Ibrahim Waziri, Tunde L. Yusuf, Eric Akintemi, Monsuru T. Kelani, Alfred Muller
Spectroscopic, crystal structure, antimicrobial and antioxidant evaluations of new Schiff base compounds: An experimental and theoretical study
Journal of Molecular Structure  1273, 134382, 2023
DOI: 10.1016/j.molstruc.2022.134382
/


[5]. Tunde Lewis Yusuf, Damilola Caleb Akintayo, Segun Daniel Oladipo, Adesola Abimbola Adeleke, Kolawole Olofinsan, Banele Vatsha, Nonhlagabezo Mabuba
The effect of structural configuration on the DNA binding and in vitro antioxidant properties of new copper(ii) N2O2 Schiff base complexes
New Journal of Chemistry  46(27), 12968, 2022
DOI: 10.1039/D2NJ01477G
/


References


[1]. Kerr, M. E.; Bender, C. M.; Monti, E. J. Heart Lung 1996, 25 (3), 200-209.
https://doi.org/10.1016/S0147-9563(96)80030-6

[2]. Oladipo, S. D.; Omondi, B.; Mocktar, C. Polyhedron 2019, 170, 712-722.
https://doi.org/10.1016/j.poly.2019.06.038

[3]. Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M. T. D.; Mazur, M.; Telser, J. Int. J. Biochem. Cell Biol. 2007, 39 (1), 44-84.
https://doi.org/10.1016/j.biocel.2006.07.001

[4]. Hertog, M. G.; Feskens, E. J.; Hollman, P. C.; Katan, M. B.; Kromhout, D. Lancet 1993, 342 (8878), 1007-1011.
https://doi.org/10.1016/0140-6736(93)92876-U

[5]. Aziz, A. N.; Taha, M.; Ismail, N. H.; Anouar, E. H.; Yousuf, S.; Jamil, W.; Awang, K.; Ahmat, N.; Khan, K. M.; Kashif, S. M. Molecules 2014, 19 (6), 8414-8433.
https://doi.org/10.3390/molecules19068414

[6]. Kostova, I.; Saso, L. Curr. Med. Chem. 2013, 20 (36), 4609-4632.
https://doi.org/10.2174/09298673113209990149

[7]. Halliwell, B.; Gutteridge, J. M. C. Free Radicals in Biology and Medicine, 5th ed.; Oxford University Press: London, England, 2015.
https://doi.org/10.1093/acprof:oso/9780198717478.001.0001

[8]. Oladipo, S. D.; Omondi, B.; Mocktar, C. Appl. Organomet. Chem. 2020, 34 (5), e5610.
https://doi.org/10.1002/aoc.5610

[9]. Riley, P. A. Int. J. Radiat. Biol. 1994, 65 (1), 27-33.
https://doi.org/10.1080/09553009414550041

[10]. Valko, M.; Rhodes, C. J.; Moncol, J.; Izakovic, M.; Mazur, M. Chem. Biol. Interact. 2006, 160 (1), 1-40.
https://doi.org/10.1016/j.cbi.2005.12.009

[11]. Gacche, R. N.; Gond, D. S.; Dhole, N. A.; Dawane, B. S. J. Enzyme Inhib. Med. Chem. 2006, 21 (2), 157-161.
https://doi.org/10.1080/14756360500532671

[12]. Khan, K. M.; Khan, M.; Ambreen, N.; Rahim, F.; Muhammad, B.; Ali, S.; Haider, S. M.; Perveen, S.; Choudhary, M. J. Pharm. Res 2011, 4 (10), 3402-3404.

[13]. Yusuf, T. L.; Oladipo, S. D.; Olagboye, S. A.; Zamisa, S. J.; Tolufashe, G. F. J. Mol. Struct. 2020, 1222 (128857), 128857.
https://doi.org/10.1016/j.molstruc.2020.128857

[14]. Mohapatra, R. K.; Das, P. K.; Pradhan, M. K.; Maihub, A. A.; El-ajaily, M. M. J. Iran. Chem. Soc. 2018, 15 (10), 2193-2227.
https://doi.org/10.1007/s13738-018-1411-2

[15]. Khan, K. M.; Khan, M.; Ali, M.; Taha, M.; Rasheed, S.; Perveen, S.; Choudhary, M. I. Bioorg. Med. Chem. 2009, 17 (22), 7795-7801.
https://doi.org/10.1016/j.bmc.2009.09.028

[16]. Khan, K. M.; Rahim, F.; Ambreen, N.; Taha, M.; Khan, M.; Jahan, H.; Najeebullah; Shaikh, A.; Iqbal, S.; Perveen, S.; Choudhary, M. I. Med. Chem. 2013, 9 (4), 588-595.
https://doi.org/10.2174/1573406411309040013

[17]. Sundriyal, S.; Sharma, R. K.; Jain, R. Curr. Med. Chem. 2006, 13 (11), 1321-1335.
https://doi.org/10.2174/092986706776873023

[18]. Shukla, S.; Srivastava, R. S.; Shrivastava, S. K.; Sodhi, A.; Kumar, P. Med. Chem. Res. 2013, 22 (4), 1604-1617.
https://doi.org/10.1007/s00044-012-0150-7

[19]. Mishra, P.; Gupta, P.; Shakya, A. K.; Shukla, R.; Srimal, R. Indian J. Physiol. Pharmacol. 1995, 39 (1), 169-172.

[20]. Jain, J.; Srivastava, R.; Aggarwal, N.; Sinha, R. Cent. Nerv. Syst. Agents Med. Chem. 2007, 7 (3), 200-204.
https://doi.org/10.2174/187152407781669143

[21]. Shetty, P. Chem. Eng. Commun. 2020, 207 (7), 985-1029.
https://doi.org/10.1080/00986445.2019.1630387

[22]. Olagboye, S. A.; Yusuf, T. L.; Oladipo, S. D.; Zamisa, S. J. Z. Krist. - New Cryst. Struct. 2020, 235 (3), 689-692.
https://doi.org/10.1515/ncrs-2019-0900

[23]. Berhanu, A. L.; Gaurav; Mohiuddin, I.; Malik, A. K.; Aulakh, J. S.; Kumar, V.; Kim, K.-H. Trends Analyt. Chem. 2019, 116, 74-91.
https://doi.org/10.1016/j.trac.2019.04.025

[24]. Olagboye, S. A.; Yusuf, T. L.; Oladipo, S. D.; Zamisa, S. J. Z. Krist. - New Cryst. Struct. 2020, 235 (4), 833-836.
https://doi.org/10.1515/ncrs-2020-0034

[25]. Hine, J.; Yeh, C. Y. J. Am. Chem. Soc. 1967, 89 (11), 2669-2676.
https://doi.org/10.1021/ja00987a030

[26]. Mermer, A.; Demirbas, N.; Uslu, H.; Demirbas, A.; Ceylan, S.; Sirin, Y. J. Mol. Struct. 2019, 1181, 412-422.
https://doi.org/10.1016/j.molstruc.2018.12.114

[27]. Bakır, T. K.; Lawag, J. B. Res. Chem. Intermed. 2020, 46 (5), 2541-2557.
https://doi.org/10.1007/s11164-020-04105-y

[28]. APEX2 Bruker, Bruker AXS Inc., Wisconsin, Madison, USA, 2004.

[29]. SAINT-Plus, Bruker AXS Inc., Wisconsin, Madison, USA, 2004.

[30]. SADABS, Bruker AXS Inc., Wisconsin, Madison, USA, 2004.

[31]. Sheldrick, G. M. Acta Crystallogr. A 2008, 64 (1), 112-122.
https://doi.org/10.1107/S0108767307043930

[32]. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. J. Appl. Crystallogr. 2008, 41 (2), 466-470.
https://doi.org/10.1107/S0021889807067908

[33]. Becke, A. D. Phys. Rev. A Gen. Phys. 1988, 38 (6), 3098-3100.
https://doi.org/10.1103/PhysRevA.38.3098

[34]. Long, F.; Zhang, X.; Cao, X.; Zhai, Q.; Song, Y.; Wang, F.; Jiang, J.; Xu, J. Fuel Process. Technol. 2020, 200 (106312), 106312.
https://doi.org/10.1016/j.fuproc.2019.106312

[35]. Buehl, M.; Thiel, W.; Fleischer, U.; Kutzelnigg, W. J. Phys. Chem. 1995, 99 (12), 4000-4007.
https://doi.org/10.1021/j100012a021

[36]. Fabian, J. Dyes Pigm. 2010, 84 (1), 36-53.
https://doi.org/10.1016/j.dyepig.2009.06.008

[37]. Turkoglu, A.; Duru, M. E.; Mercan, N.; Kivrak, I.; Gezer, K. Food Chem. 2007, 101 (1), 267-273.
https://doi.org/10.1016/j.foodchem.2006.01.025

[38]. Oyaizu, M. Jpn. J. Nutr. Diet. 1986, 44 (6), 307-315.
https://doi.org/10.5264/eiyogakuzashi.44.307

[39]. Smirnoff, N.; Cumbes, Q. J. Phytochemistry 1989, 28 (4), 1057-1060.
https://doi.org/10.1016/0031-9422(89)80182-7

[40]. Elemike, E. E.; Nwankwo, H. U.; Onwudiwe, D. C. J. Mol. Struct. 2018, 1155, 123-132.
https://doi.org/10.1016/j.molstruc.2017.10.102

[41]. Elemike, E. E.; Onwudiwe, D. C.; Nwankwo, H. U.; Hosten, E. C. J. Mol. Struct. 2017, 1136, 253-262.
https://doi.org/10.1016/j.molstruc.2017.01.085

[42]. Al Zoubi, W.; Al-Hamdani, A. A. S.; Ahmed, S. D.; Ko, Y. G. J. Phys. Org. Chem. 2018, 31 (2), e3752.
https://doi.org/10.1002/poc.3752

[43]. Arifuzzaman, M.; Karim, M. R.; Siddiquee, T. A.; Mirza, A. H.; Ali, M. A. Int. J. Org. Chem. (Irvine) 2013, 03 (01), 81-86.
https://doi.org/10.4236/ijoc.2013.31009

[44]. Naeimi, H.; Safari, J.; Heidarnezhad, A. Dyes Pigm. 2007, 73 (2), 251-253.
https://doi.org/10.1016/j.dyepig.2005.12.009

[45]. Issa, R. M.; Khedr, A. M.; Rizk, H. J. Chin. Chem. Soc. 2008, 55 (4), 875-884.
https://doi.org/10.1002/jccs.200800131

[46]. Oladipo, S. D.; Omondi, B. Transit. Met. Chem. 2020, 45 (6), 391-402.
https://doi.org/10.1007/s11243-020-00391-y

[47]. Oladipo, S. D.; Mocktar, C.; Omondi, B. Arab. J. Chem. 2020, 13 (8), 6379-6394.
https://doi.org/10.1016/j.arabjc.2020.05.039

[48]. Khosravi, I.; Hosseini, F.; Khorshidifard, M.; Sahihi, M.; Rudbari, H. A. J. Mol. Struct. 2016, 1119, 373-384.
https://doi.org/10.1016/j.molstruc.2016.04.094

[49]. Aldoshin, S. M.; Chuev, I. I.; Kozina, O. A. Mol. Cryst. Liq. Cryst. 1995, 264 (1), 215-226.

[50]. Ferguson, G.; Glidewell, C.; Low, J. N.; Skakle, J. M. S.; Wardell, J. L. Acta Crystallogr. C 2005, 61 (Pt 7), o445-9.
https://doi.org/10.1107/S0108270105016239

[51]. Selvaganapathi, P.; Thirumaran, S.; Ciattini, S. J. Mol. Struct. 2017, 1148, 547-556.
https://doi.org/10.1016/j.molstruc.2017.07.071

[52]. Mudsainiyan, R. K.; Pandey, S. K. Z. Anorg. Allg. Chem. 2017, 643 (20), 1245-1252.
https://doi.org/10.1002/zaac.201700182

[53]. Spackman, M. A.; Jayatilaka, D. CrystEngComm 2009, 11 (1), 19-32.
https://doi.org/10.1039/B818330A

[54]. Fleming, I. Molecular orbitals and organic chemical reactions; ISBN: 978-0-470-74658-5, John Wiley & Sons, 2011.

[55]. Aicha, Y. A.; Bouzzine, S. I. M.; Zair, T.; Bouachrine, M.; Hamidi, M.; Salgado-Morán, G.; Tagle, R. R.; Mendoza-Huizar, L. H. J. Chil. Chem. Soc. 2017, 62 (3), 3637-3646.
https://doi.org/10.4067/s0717-97072017000303637

[56]. Vargas, R.; Garza, J.; Cedillo, A. J. Phys. Chem. A 2005, 109 (39), 8880-8892.
https://doi.org/10.1021/jp052111w

[57]. Borghi, G.; Ferretti, A.; Nguyen, N. L.; Dabo, I.; Marzari, N. Phys. Rev. B Condens. Matter Mater. Phys. 2014, 90 (7), 075135.
https://doi.org/10.1103/PhysRevB.90.075135

[58]. Glendening, E.; Reed, A.; Carpenter, J.; Weinhold, F. NBO Version 3.1, TCI, University of Wisconsin, Madison, 1998.

[59]. Vetrivel, R.; Deka, R. C.; Chatterjee, A.; Kubo, M.; Broclawik, E.; Miyamoto, A. Studies on the Molecular Electrostatic Potential inside the Microporous Material and Its Relevance to Their Catalytic Activity. In Theoretical and Computational Chemistry; Elsevier, 1996; pp 509-541.
https://doi.org/10.1016/S1380-7323(96)80052-5

[60]. Silva, P. J.; Ramos, M. J. J. Org. Chem. 2009, 74 (16), 6120-6129.
https://doi.org/10.1021/jo900980d

[61]. Ophardt, C. E.; Ophardt, C. E. Virtual Chembook: Elmhurst College; Elmhurst College, 2003.

[62]. Oladipo, S. D.; Olotu, F. A.; Soliman, M.; Mocktar, C.; Omondi, B. J. Mol. Struct. 2020, 1219 (128553), 128553.
https://doi.org/10.1016/j.molstruc.2020.128553

[63]. Vartale, S. P.; Halikar, N. K.; Pawar, Y. D.; Tawde, K. V. Arab. J. Chem. 2016, 9, S1117-S1124.
https://doi.org/10.1016/j.arabjc.2011.12.007

[64]. Pakravan, P.; Kashanian, S.; Khodaei, M. M.; Harding, F. J. Pharmacol. Rep. 2013, 65 (2), 313-335.
https://doi.org/10.1016/S1734-1140(13)71007-7

[65]. Pastor, N.; Weinstein, H.; Jamison, E.; Brenowitz, M. J. Mol. Biol. 2000, 304 (1), 55-68.
https://doi.org/10.1006/jmbi.2000.4173

[66]. Lipinski, C. A. J. Pharmacol. Toxicol. Methods 2000, 44 (1), 235-249.
https://doi.org/10.1016/S1056-8719(00)00107-6

[67]. Olotu, F. A.; Munsamy, G.; Soliman, M. E. S. Comput. Struct. Biotechnol. J. 2018, 16, 573-586.
https://doi.org/10.1016/j.csbj.2018.11.005

[68]. Shityakov, S.; Neuhaus, W.; Dandekar, T.; Förster, C. Int. J. Comput. Biol. Drug Des. 2013, 6 (1-2), 146-156.
https://doi.org/10.1504/IJCBDD.2013.052195

[69]. Prasanna, S.; Doerksen, R. J. Curr. Med. Chem. 2009, 16 (1), 21-41.
https://doi.org/10.2174/092986709787002817

[70]. Veber, D. F.; Johnson, S. R.; Cheng, H.-Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D. J. Med. Chem. 2002, 45 (12), 2615-2623.
https://doi.org/10.1021/jm020017n

[71]. Sjögren, E.; Westergren, J.; Grant, I.; Hanisch, G.; Lindfors, L.; Lennernäs, H.; Abrahamsson, B.; Tannergren, C. Eur. J. Pharm. Sci. 2013, 49 (4), 679-698.
https://doi.org/10.1016/j.ejps.2013.05.019

[72]. Cornaire, G.; Woodley, J.; Hermann, P.; Cloarec, A.; Arellano, C.; Houin, G. Int. J. Pharm. 2004, 278 (1), 119-131.
https://doi.org/10.1016/j.ijpharm.2004.03.001


Supporting information


The Supplementary Material for this article can be found online at: Supplementary files

How to cite


Oladipo, S.; Yusuf, T.; Zamisa, S.; Tolufashe, G.; Olofinsan, K.; Tywabi-Ngeva, Z.; Mabuba, N. Eur. J. Chem. 2021, 12(2), 204-215. doi:10.5155/eurjchem.12.2.204-215.2088
Oladipo, S.; Yusuf, T.; Zamisa, S.; Tolufashe, G.; Olofinsan, K.; Tywabi-Ngeva, Z.; Mabuba, N. Synthesis, crystal structure with free radical scavenging activity and theoretical studies of Schiff bases derived from 1-naphthylamine, 2,6-diisopropylaniline, and substituted benzaldehyde. Eur. J. Chem. 2021, 12(2), 204-215. doi:10.5155/eurjchem.12.2.204-215.2088
Oladipo, S., Yusuf, T., Zamisa, S., Tolufashe, G., Olofinsan, K., Tywabi-Ngeva, Z., & Mabuba, N. (2021). Synthesis, crystal structure with free radical scavenging activity and theoretical studies of Schiff bases derived from 1-naphthylamine, 2,6-diisopropylaniline, and substituted benzaldehyde. European Journal of Chemistry, 12(2), 204-215. doi:10.5155/eurjchem.12.2.204-215.2088
Oladipo, Segun, Tunde Lewis Yusuf, Sizwe Joshua Zamisa, Gideon Femi Tolufashe, Kolawole Ayodapo Olofinsan, Zikhona Tywabi-Ngeva, & Nonhlangabezo Mabuba. "Synthesis, crystal structure with free radical scavenging activity and theoretical studies of Schiff bases derived from 1-naphthylamine, 2,6-diisopropylaniline, and substituted benzaldehyde." European Journal of Chemistry [Online], 12.2 (2021): 204-215. Web. 29 May. 2023
Oladipo, Segun, Yusuf, Tunde, Zamisa, Sizwe, Tolufashe, Gideon, Olofinsan, Kolawole, Tywabi-Ngeva, Zikhona, AND Mabuba, Nonhlangabezo. "Synthesis, crystal structure with free radical scavenging activity and theoretical studies of Schiff bases derived from 1-naphthylamine, 2,6-diisopropylaniline, and substituted benzaldehyde" European Journal of Chemistry [Online], Volume 12 Number 2 (30 June 2021)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.12.2.204-215.2088


CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2021, 12(2), 204-215 | doi: https://doi.org/10.5155/eurjchem.12.2.204-215.2088 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2023  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.