European Journal of Chemistry 2021, 12(1), 60-63 | doi: https://doi.org/10.5155/eurjchem.12.1.60-63.2089 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Rietveld refinement of the low temperature crystal structures of Cs2XSi5O12 (X = Cu, Cd and Zn)


Anthony Martin Thomas Bell (1,*) orcid

(1) Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, S1 1WB, United Kingdom
(*) Corresponding Author

Received: 28 Jan 2021 | Revised: 17 Feb 2021 | Accepted: 18 Feb 2021 | Published: 31 Mar 2021 | Issue Date: March 2021

Abstract


The synthetic leucite silicate framework mineral analogues Cs2XSi5O12 (X = Cu, Cd, Zn) were prepared by high-temperature solid-state synthesis. The results of Rietveld refinement, using 18 keV synchrotron X-ray powder diffraction data collected at low temperatures (8K X = Cu, Zn; 10K X = Cd) show that the title compounds crystallize in the space group Pbca and are isostructural with the ambient temperature structures of these analogues. The structures consist of tetrahedrally coordinated SiO4 and XO4 sharing corners to form a partially substituted silicate framework. Extraframework Cs cations sit in channels in the framework. All atoms occupy the 8c general position for this space group. In these refined structures, silicon and X atoms are ordered onto separate tetrahedrally coordinated sites (T-sites).


Keywords


Cesium; Rietveld refinement; Solid-state structures; Synchrotron radiation; X-ray powder diffraction; Silicate framework structure

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.12.1.60-63.2089

Links for Article


| | | | | | |

| | | | | | |

| | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 135 times | icon graph PDF Article downloaded 27 times


References


[1]. Mazzi, F.; Galli, E.; Gottardi, G. Am. Mineral. 1976, 61 (1-2), 108-115.

[2]. Dimitrijevic, R.; Dondur, V.; Petranovic, N. J. Solid State Chem. 1991, 95 (2), 335-345.
https://doi.org/10.1016/0022-4596(91)90114-W

[3]. Gatta, G. D.; Rotiroti, N.; Fisch, M.; Kadiyski, M.; Armbruster, T. Phys. Chem. Minerals 2008, 35 (9), 521-533.
https://doi.org/10.1007/s00269-008-0246-2

[4]. Bell, A. M. T.; Henderson, C. M. B. J. Solid State Chem. 2020, 284, 121142.
https://doi.org/10.1016/j.jssc.2019.121142

[5]. Bell, A. M. T.; Henderson, C. M. B. Acta Crystallogr. C 1994, 50 (7), 984-986.
https://doi.org/10.1107/S0108270194002039

[6]. Bell, A. M. T.; Henderson, C. M. B.; Redfern, S. A. T.; Cernik, R. J.; Champness, P. E.; Fitch, A. N.; Kohn, S. C. Acta Crystallogr. B 1994, 50 (1), 31-41.
https://doi.org/10.1107/S0108768193008754

[7]. Bell, A. M. T.; Henderson, C. M. B. Acta Crystallogr. B 2018, 74 (3), 274-286.
https://doi.org/10.1107/S2052520618004092

[8]. Bell, A. M. T.; Redfern, S. A. T.; Henderson, C. M. B.; Kohn, S. C. Acta Crystallogr. B 1994, 50 (5), 560-566.
https://doi.org/10.1107/S0108768194003393

[9]. Bell, A. M. T.; Henderson, C. M. B. Acta Crystallogr. C 1996, 52 (9), 2132-2139.
https://doi.org/10.1107/S0108270196003162

[10]. Bell, A. M. T.; Henderson, C. M. B. Acta Crystallogr. B 2009, 65 (4), 435-444.
https://doi.org/10.1107/S0108768109024860

[11]. Bell, A. M. T.; Knight, K. S.; Henderson, C. M. B.; Fitch, A. N. Acta Crystallogr. B 2010, 66 (1), 51-59.
https://doi.org/10.1107/S0108768109054895

[12]. Bell, A. M. T.; Henderson, C. M. B. Acta Crystallogr. E 2016, 72 (2), 249-252.
https://doi.org/10.1107/S2056989016001390

[13]. Bell, A. M. T.; Henderson, C. M. B. Powder Diffr. 2019, 34 (S1), S2-S7.
https://doi.org/10.1017/S0885715619000071

[14]. Kohn, S. C.; Henderson, C. M. B.; Dupree, R. Phys. Chem. Minerals 1994, 21 (3), 176-190.
https://doi.org/10.1007/BF00203148

[15]. Redfern, S. A. T.; Henderson, C. M. B. Am. Mineral. 1996, 81, 369-374.
https://doi.org/10.2138/am-1996-3-411

[16]. Bell, A. M. T.; Henderson, C. M. B. Mineral. Mag. 2012, 76 (5), 1257-1280.
https://doi.org/10.1180/minmag.2012.076.5.12

[17]. Knapp, M.; Baehtz, C.; Ehrenberg, H.; Fuess, H. J. Synchrotron Radiat. 2004, 11 (4), 328-334.
https://doi.org/10.1107/S0909049504009367

[18]. Knapp, M.; Joco, V.; Baehtz, C.; Brecht, H. H.; Berghaeuser, A.; Ehrenberg, H.; von Seggern, H.; Fuess, H. Nucl. Instrum. Methods Phys. Res. A 2004, 521 (2-3), 565-570.
https://doi.org/10.1016/j.nima.2003.10.100

[19]. Rietveld, H. M. J. Appl. Cryst. 1969, 2 (2), 65-71.
https://doi.org/10.1107/S0021889869006558

[20]. Rodriguez-Carvajal, J. Physica B: Condensed Matter 1993, 192 (1-2), 55-69.
https://doi.org/10.1016/0921-4526(93)90108-I

[21]. International Tables for X-ray Crystallography, volume III, Table 4.1.1. International Union of Crystallography, Pub. by Kynoch Press, 1975.

[22]. Momma, K.; Izumi, F. J. Appl. Cryst. 2008, 41 (3), 653-658.
https://doi.org/10.1107/S0021889808012016


Supporting information


The Supplementary Material for this article can be found online at: Supplementary files

How to cite


Bell, A. Eur. J. Chem. 2021, 12(1), 60-63. doi:10.5155/eurjchem.12.1.60-63.2089
Bell, A. Rietveld refinement of the low temperature crystal structures of Cs2XSi5O12 (X = Cu, Cd and Zn). Eur. J. Chem. 2021, 12(1), 60-63. doi:10.5155/eurjchem.12.1.60-63.2089
Bell, A. (2021). Rietveld refinement of the low temperature crystal structures of Cs2XSi5O12 (X = Cu, Cd and Zn). European Journal of Chemistry, 12(1), 60-63. doi:10.5155/eurjchem.12.1.60-63.2089
Bell, Anthony. "Rietveld refinement of the low temperature crystal structures of Cs2XSi5O12 (X = Cu, Cd and Zn)." European Journal of Chemistry [Online], 12.1 (2021): 60-63. Web. 18 May. 2021
Bell, Anthony. "Rietveld refinement of the low temperature crystal structures of Cs2XSi5O12 (X = Cu, Cd and Zn)" European Journal of Chemistry [Online], Volume 12 Number 1 (31 March 2021)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.12.1.60-63.2089

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2021, 12(1), 60-63 | doi: https://doi.org/10.5155/eurjchem.12.1.60-63.2089 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Author

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2021  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2021 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.