European Journal of Chemistry

Synthesis, crystal structure, and electrochemical hydrogenation of the La2Mg17-xMx (M = Ni, Sn, Sb) solid solutions


Main Article Content

Vasyl Kordan
Vitalii Nytka
Ivan Tarasiuk
Oksana Zelinska
Volodymyr Pavlyuk


The crystal structure of La2Mg17-xSnx solid solution was determined by single crystal X-ray diffraction for the first time. This phase crystallizes in hexagonal symmetry with space group P63/mmc (a = 10.3911(3), c = 10.2702(3) Å, V = 960.36(6) Å3, R1 = 0.0180, wR2 = 0.0443 for the composition La3.65Mg30Sn1.10) and is related to the structure of CeMg10.3 and Th2Ni17-types which are derivative from the CaCu5-type. A series of isotypical solid solutions La2Mg17-xMx (M = Ni, Sn, Sb, x ~0.8) was synthesized and studied by X-ray powder diffraction, energy dispersive X-ray spectroscopy and fluorescent X-ray spectroscopy. All solid solutions crystallize with the structure related to the Th2Ni17-type. The electrochemical hydrogenation confirmed the similar electrochemical behavior of all studied alloys. The amount of deintercalated hydrogen depends on the physical and chemical characteristics of doping elements and increases in the sequence Sn < Mg < Sb < Ni. The most geometrically advantageous sites are octahedral voids 6h of the initial structure, thus a coordination polyhedron for H-atom is an octahedron [HLa2(Mg,M)4].

icon graph This Abstract was viewed 915 times | icon graph Article PDF downloaded 427 times icon graph Article CIF FILE downloaded 0 times

How to Cite
Kordan, V.; Nytka, V.; Tarasiuk, I.; Zelinska, O.; Pavlyuk, V. Synthesis, Crystal Structure, and Electrochemical Hydrogenation of the La2Mg17-XMx (M = Ni, Sn, Sb) Solid Solutions. Eur. J. Chem. 2021, 12, 197-203.

Article Details

Crossref - Scopus - Google - European PMC

[1]. Besenhard, J. O. Handbook of Battery Materials; Besenhard, J. O., Ed.; Wiley-Vch, 1999.

[2]. Balińska, A.; Kordan, V.; Misztal, R.; Pavlyuk, V. J. Solid State Electrochem. 2015, 19 (8), 2481-2490.

[3]. Kowalczyk, G.; Kordan, V.; Stetskiv, A.; Pavlyuk, V. Intermetallics (Barking) 2016, 70, 53-60.

[4]. Stetskiv, A.; Kordan, V.; Tarasiuk, I.; Zelinska, O.; Pavlyuk, V. Chem. Met. Alloys 2014, 7(1/2), 106-111. (accessed Apr 6, 2021).

[5]. Kordan, V.; Zelinska, O.; Pavlyuk, V.; Oshchapovsky, I.; Serkiz, R. Chem. Met. Alloys 2016, 9(1/2), 84-91. (accessed Apr 6, 2021).

[6]. Pavlyuk, V.; Ciesielski, W.; Pavlyuk, N.; Kulawik, D.; Szyrej, M.; Rozdzynska-Kielbik, B.; Kordan, V. Ionics (Kiel) 2019, 25 (6), 2701-2709.

[7]. Pavlyuk, V.; Ciesielski, W.; Pavlyuk, N.; Kulawik, D.; Kowalczyk, G.; Balińska, A.; Szyrej, M.; Rozdzynska-Kielbik, B.; Folentarska, A.; Kordan, V. Mater. Chem. Phys. 2019, 223, 503-511.

[8]. Kordan, V.; Nytka, V.; Kovalczyk, G.; Balinska, A.; Zelinska, O.; Serkiz, R.; Pavlyuk, V. Chem. Met. Alloys. 2017, 10(1/2), 61-68. (accessed Apr 6, 2021).

[9]. Yartys, V.; Noreus, D.; Latroche, M. Appl. Phys. A Mater. Sci. Process. 2016, 122 (1), 43-54.

[10]. Li, P.; Zhang, J.; Zhai, F.; Ma, G.; Xu, L.; Qu, X. J. Rare Earths 2015, 33 (4), 417-424.

[11]. Hadjixenophontos, E.; Roussel, M.; Sato, T.; Weigel, A.; Stender, P.; Orimo, S.-I.; Schmitz, G. Int. J. Hydrogen Energy 2017, 42 (35), 22411-22416.

[12]. Zhou, W.; Ma, Z.; Wu, C.; Zhu, D.; Huang, L.; Chen, Y. Int. J. Hydrogen Energy 2016, 41 (3), 1801-1810.

[13]. Liu, Y.; Yuan, H.; Guo, M.; Jiang, L. Int. J. Hydrogen Energy 2019, 44 (39), 22064-22073.

[14]. Liu, J.; Zhu, S.; Cheng, H.; Zheng, Z.; Zhu, Z.; Yan, K.; Han, S. J. Alloys Compd. 2019, 777, 1087-1097.

[15]. Wang, L.; Zhang, X.; Zhou, S.; Xu, J.; Yan, H.; Luo, Q.; Li, Q. Int. J. Hydrogen Energy 2020, 45 (33), 16677-16689.

[16]. Dutta, K.; Srivastava, O. N. J. Mater. Sci. 1993, 28 (13), 3457-3462.

[17]. De Negri, S.; Solokha, P.; Minetti, R.; Skrobańska, M.; Saccone, A. J. Solid State Chem. 2017, 248, 32-39.

[18]. King, G.; Schwarzenbach, D. L. Xtal 3. 7 System; University of Western Australia, 2000.

[19]. Kraus, W.; Nolze G. Powder Cell for Windows, Berlin, 1999.

[20]. MTech Lab - Measuring technologies, (accessed Apr 6, 2021).

[21]. SADABS, Bruker AXS Inc., Wisconsin, Madison, USA, 2009.

[22]. Sheldrick, G. M. Acta Crystallogr. A 2008, 64 (1), 112-122.

[23]. Sheldrick, G. M. Acta Crystallogr. C Struct. Chem. 2015, 71 (1), 3-8.

[24]. Freccero, R.; De Negri, S.; Saccone, A.; Solokha, P. Dalton Trans. 2020, 49 (34), 12056-12067.

[25]. De Negri, S.; Giovannini, M.; Saccone, A. J. Alloys Compd. 2005, 397 (1-2), 126-134.

[26]. Balcerzak, M.; Nowak, M.; Jurczyk, M. Int. J. Hydrogen Energy 2017, 42 (2), 1436-1443.

[27]. Isnard, O.; Miraglia, S.; Soubeyroux, J. L.; Fruchart, D.; Stergiou, A. J. Less-Common Met. 1990, 162 (2), 273-284.

Supporting Agencies

Most read articles by the same author(s)

Dimensions - Altmetric - scite_ - PlumX

Downloads and views


Download data is not yet available.


Metrics Loading ...
License Terms

License Terms


Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License ( By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License ( are administered by Atlanta Publishing House LLC (European Journal of Chemistry).