European Journal of Chemistry 2021, 12(2), 197-203 | doi: https://doi.org/10.5155/eurjchem.12.2.197-203.2092 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Synthesis, crystal structure, and electrochemical hydrogenation of the La2Mg17-xMx (M = Ni, Sn, Sb) solid solutions


Vasyl Kordan (1,*) orcid , Vitalii Nytka (2) orcid , Ivan Tarasiuk (3) orcid , Oksana Zelinska (4) orcid , Volodymyr Pavlyuk (5) orcid

(1) Department of Inorganic Chemistry, Faculty of Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya St., 6, 79005 Lviv, Ukraine
(2) Department of Inorganic Chemistry, Faculty of Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya St., 6, 79005 Lviv, Ukraine
(3) Department of Inorganic Chemistry, Faculty of Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya St., 6, 79005 Lviv, Ukraine
(4) Department of Inorganic Chemistry, Faculty of Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya St., 6, 79005 Lviv, Ukraine
(5) Institute of Chemistry, Jan Długosz University of Częstochowa, Armii Krajowej Ave, 13/15, 42200, Częstochowa, Poland
(*) Corresponding Author

Received: 30 Jan 2021 | Revised: 24 Mar 2021 | Accepted: 31 Mar 2021 | Published: 30 Jun 2021 | Issue Date: June 2021

Abstract


The crystal structure of La2Mg17-xSnx solid solution was determined by single crystal X-ray diffraction for the first time. This phase crystallizes in hexagonal symmetry with space group P63/mmc (a = 10.3911(3), c = 10.2702(3) Å, V = 960.36(6) Å3, R1 = 0.0180, wR2 = 0.0443 for the composition La3.65Mg30Sn1.10) and is related to the structure of CeMg10.3 and Th2Ni17-types which are derivative from the CaCu5-type. A series of isotypical solid solutions La2Mg17-xMx (M = Ni, Sn, Sb, x ~0.8) was synthesized and studied by X-ray powder diffraction, energy dispersive X-ray spectroscopy and fluorescent X-ray spectroscopy. All solid solutions crystallize with the structure related to the Th2Ni17-type. The electrochemical hydrogenation confirmed the similar electrochemical behavior of all studied alloys. The amount of deintercalated hydrogen depends on the physical and chemical characteristics of doping elements and increases in the sequence Sn < Mg < Sb < Ni. The most geometrically advantageous sites are octahedral voids 6h of the initial structure, thus a coordination polyhedron for H-atom is an octahedron [HLa2(Mg,M)4].


Announcements


One of our sponsors will cover the article processing fee for all submissions made between May 17, 2023 and May 31, 2023 (Voucher code: SPONSOR2023).

Editor-in-Chief
European Journal of Chemistry

Keywords


Hydrides; Hydrogenation; Electrochemistry; Intermetallic phases; Electron microscopy; Single crystal structure

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.12.2.197-203.2092

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 700 times | icon graph PDF Article downloaded 233 times


Citations

/


[1]. Vitalii Nytka, Vasyl Kordan, Volodymyr Pavlyuk
La3.65Mg30Sb1.07 as a disordered derivative of Th2Ni17-type structure
Zeitschrift für Kristallographie - New Crystal Structures  237(6), 1147, 2022
DOI: 10.1515/ncrs-2022-0411
/


References


[1]. Besenhard, J. O. Handbook of Battery Materials; Besenhard, J. O., Ed.; Wiley-Vch, 1999.
https://doi.org/10.1002/9783527611676

[2]. Balińska, A.; Kordan, V.; Misztal, R.; Pavlyuk, V. J. Solid State Electrochem. 2015, 19 (8), 2481-2490.
https://doi.org/10.1007/s10008-015-2895-7

[3]. Kowalczyk, G.; Kordan, V.; Stetskiv, A.; Pavlyuk, V. Intermetallics (Barking) 2016, 70, 53-60.
https://doi.org/10.1016/j.intermet.2015.12.004

[4]. Stetskiv, A.; Kordan, V.; Tarasiuk, I.; Zelinska, O.; Pavlyuk, V. Chem. Met. Alloys 2014, 7(1/2), 106-111. http://www.chemetal-journal.org/ejournal14/CMA0282.pdf (accessed Apr 6, 2021).
https://doi.org/10.30970/cma7.0282

[5]. Kordan, V.; Zelinska, O.; Pavlyuk, V.; Oshchapovsky, I.; Serkiz, R. Chem. Met. Alloys 2016, 9(1/2), 84-91. https://chemetal-journal.org/ejournal18/CMA0327.pdf (accessed Apr 6, 2021).
https://doi.org/10.30970/cma9.0327

[6]. Pavlyuk, V.; Ciesielski, W.; Pavlyuk, N.; Kulawik, D.; Szyrej, M.; Rozdzynska-Kielbik, B.; Kordan, V. Ionics (Kiel) 2019, 25 (6), 2701-2709.
https://doi.org/10.1007/s11581-018-2743-8

[7]. Pavlyuk, V.; Ciesielski, W.; Pavlyuk, N.; Kulawik, D.; Kowalczyk, G.; Balińska, A.; Szyrej, M.; Rozdzynska-Kielbik, B.; Folentarska, A.; Kordan, V. Mater. Chem. Phys. 2019, 223, 503-511.
https://doi.org/10.1016/j.matchemphys.2018.11.007

[8]. Kordan, V.; Nytka, V.; Kovalczyk, G.; Balinska, A.; Zelinska, O.; Serkiz, R.; Pavlyuk, V. Chem. Met. Alloys. 2017, 10(1/2), 61-68. https://chemetal-journal.org/ejournal21/CMA0355.pdf (accessed Apr 6, 2021).

[9]. Yartys, V.; Noreus, D.; Latroche, M. Appl. Phys. A Mater. Sci. Process. 2016, 122 (1), 43-54.
https://doi.org/10.1007/s00339-015-9538-9

[10]. Li, P.; Zhang, J.; Zhai, F.; Ma, G.; Xu, L.; Qu, X. J. Rare Earths 2015, 33 (4), 417-424.
https://doi.org/10.1016/S1002-0721(14)60435-X

[11]. Hadjixenophontos, E.; Roussel, M.; Sato, T.; Weigel, A.; Stender, P.; Orimo, S.-I.; Schmitz, G. Int. J. Hydrogen Energy 2017, 42 (35), 22411-22416.
https://doi.org/10.1016/j.ijhydene.2017.04.010

[12]. Zhou, W.; Ma, Z.; Wu, C.; Zhu, D.; Huang, L.; Chen, Y. Int. J. Hydrogen Energy 2016, 41 (3), 1801-1810.
https://doi.org/10.1016/j.ijhydene.2015.10.070

[13]. Liu, Y.; Yuan, H.; Guo, M.; Jiang, L. Int. J. Hydrogen Energy 2019, 44 (39), 22064-22073.
https://doi.org/10.1016/j.ijhydene.2019.06.081

[14]. Liu, J.; Zhu, S.; Cheng, H.; Zheng, Z.; Zhu, Z.; Yan, K.; Han, S. J. Alloys Compd. 2019, 777, 1087-1097.
https://doi.org/10.1016/j.jallcom.2018.11.094

[15]. Wang, L.; Zhang, X.; Zhou, S.; Xu, J.; Yan, H.; Luo, Q.; Li, Q. Int. J. Hydrogen Energy 2020, 45 (33), 16677-16689.
https://doi.org/10.1016/j.ijhydene.2020.04.136

[16]. Dutta, K.; Srivastava, O. N. J. Mater. Sci. 1993, 28 (13), 3457-3462.
https://doi.org/10.1007/BF01159822

[17]. De Negri, S.; Solokha, P.; Minetti, R.; Skrobańska, M.; Saccone, A. J. Solid State Chem. 2017, 248, 32-39.
https://doi.org/10.1016/j.jssc.2017.01.016

[18]. King, G.; Schwarzenbach, D. L. Xtal 3. 7 System; University of Western Australia, 2000.

[19]. Kraus, W.; Nolze G. Powder Cell for Windows, Berlin, 1999.

[20]. MTech Lab - Measuring technologies, http://chem.lnu.edu.ua/mtech/mtech.htm (accessed Apr 6, 2021).

[21]. SADABS, Bruker AXS Inc., Wisconsin, Madison, USA, 2009.

[22]. Sheldrick, G. M. Acta Crystallogr. A 2008, 64 (1), 112-122.
https://doi.org/10.1107/S0108767307043930

[23]. Sheldrick, G. M. Acta Crystallogr. C Struct. Chem. 2015, 71 (1), 3-8.
https://doi.org/10.1107/S2053229614024218

[24]. Freccero, R.; De Negri, S.; Saccone, A.; Solokha, P. Dalton Trans. 2020, 49 (34), 12056-12067.
https://doi.org/10.1039/D0DT02359K

[25]. De Negri, S.; Giovannini, M.; Saccone, A. J. Alloys Compd. 2005, 397 (1-2), 126-134.
https://doi.org/10.1016/j.jallcom.2005.01.025

[26]. Balcerzak, M.; Nowak, M.; Jurczyk, M. Int. J. Hydrogen Energy 2017, 42 (2), 1436-1443.
https://doi.org/10.1016/j.ijhydene.2016.05.220

[27]. Isnard, O.; Miraglia, S.; Soubeyroux, J. L.; Fruchart, D.; Stergiou, A. J. Less-Common Met. 1990, 162 (2), 273-284.
https://doi.org/10.1016/0022-5088(90)90343-I


Supporting information


The Supplementary Material for this article can be found online at: Supplementary files

How to cite


Kordan, V.; Nytka, V.; Tarasiuk, I.; Zelinska, O.; Pavlyuk, V. Eur. J. Chem. 2021, 12(2), 197-203. doi:10.5155/eurjchem.12.2.197-203.2092
Kordan, V.; Nytka, V.; Tarasiuk, I.; Zelinska, O.; Pavlyuk, V. Synthesis, crystal structure, and electrochemical hydrogenation of the La2Mg17-xMx (M = Ni, Sn, Sb) solid solutions. Eur. J. Chem. 2021, 12(2), 197-203. doi:10.5155/eurjchem.12.2.197-203.2092
Kordan, V., Nytka, V., Tarasiuk, I., Zelinska, O., & Pavlyuk, V. (2021). Synthesis, crystal structure, and electrochemical hydrogenation of the La2Mg17-xMx (M = Ni, Sn, Sb) solid solutions. European Journal of Chemistry, 12(2), 197-203. doi:10.5155/eurjchem.12.2.197-203.2092
Kordan, Vasyl, Vitalii Nytka, Ivan Tarasiuk, Oksana Zelinska, & Volodymyr Pavlyuk. "Synthesis, crystal structure, and electrochemical hydrogenation of the La2Mg17-xMx (M = Ni, Sn, Sb) solid solutions." European Journal of Chemistry [Online], 12.2 (2021): 197-203. Web. 28 May. 2023
Kordan, Vasyl, Nytka, Vitalii, Tarasiuk, Ivan, Zelinska, Oksana, AND Pavlyuk, Volodymyr. "Synthesis, crystal structure, and electrochemical hydrogenation of the La2Mg17-xMx (M = Ni, Sn, Sb) solid solutions" European Journal of Chemistry [Online], Volume 12 Number 2 (30 June 2021)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.12.2.197-203.2092


CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2021, 12(2), 197-203 | doi: https://doi.org/10.5155/eurjchem.12.2.197-203.2092 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2023  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.