

N'-(Pyridin-3-ylmethylene)benzenesulfonohydrazide: Crystal structure, DFT, Hirshfeld surface and in silico anticancer studies
Ifeyinwa Stella Ozochukwu (1)






(1) Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
(2) Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
(3) Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
(4) Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
(5) Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
(6) Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
(*) Corresponding Author
Received: 31 Jan 2021 | Revised: 01 Apr 2021 | Accepted: 20 Apr 2021 | Published: 30 Sep 2021 | Issue Date: September 2021
Abstract
A new Schiff base, N'-(pyridin-3-ylmethylene)benzenesulfonohydrazide, was synthesized and characterized by elemental analysis, IR, Mass, 1H NMR and 13C NMR spectroscopy, and single-crystal X-ray determination. The asymmetric molecule crystallized in the monoclinic crystal system and P2(1)/c space group. Crystal data for C12H11N3O2S: a = 9.7547(4) Å, b = 9.8108(4) Å, c = 13.1130(5) Å, β = 109.038(2)°, V = 1186.29(8) Å3, Z = 4, μ(MoKα) = 0.270 mm-1, Dcalc = 1.463 g/cm3, 13338 reflections measured (5.296° ≤ 2Θ ≤ 55.484°), 2790 unique (Rint = 0.0494, Rsigma = 0.0400) which were used in all calculations. The final R1 was 0.0345 (I > 2σ(I)) and wR2 was 0.0914 (all data). In the crystal structure of the compound C12H11N3O2S, molecules are linked in a continuous chain by intermolecular of N∙∙∙HN=N hydrogen bonds. The pyridine moiety is planar, while the benzenesulfonohydrazide group adopts a gauche conformation about C-S-N angle (105.54°). The Hirshfeld surface analysis and fingerprint plots were used to establish the presence, nature, and percentage contribution of the different intermolecular interactions, including N-H∙∙∙N, C-H∙∙∙O, C-H∙∙∙C, and π∙∙∙π interactions, with the C-H contacts having the most significant contribution. The pairwise interaction energies were calculated at the B3LYP/6-31G(d,p) level of theory, and interaction energy profiles showed that the electrostatic forces had the most significant contribution to the total interaction energies of the different molecular pairs in the crystal. In-silico technique was used to examine the compound as a possible anticancer agent. The molecule demonstrated zero violation of the criteria of Lipinski’s rule of five with a polar surface area of 116.03 Å2. The molecule displayed favorable binding interactions with ten selected validated anticancer protein targets ranging from -9.58 to -11.95 kcal/mol and -2.73 to -5.73 kcal/mol on scoring and rescoring, respectively, with London dG and Affinity dG scoring functions. Two proteins; farnesyl transferase and signaling protein, preferred interactions with the Schiff-base over their co-crystallized inhibitors according to London dG scoring. Analysis of binding poses indicated that the Schiff-base made contact with amino acid residues of the two proteins through the N-H, sulphonyl oxygen, and phenyl groups, and this could be exploited in chemical and structural modification towards activity optimization.
Announcements
Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.
1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization or a DFT study between September 15, 2023 and October 31, 2023 (Voucher code: FALL2023).
2. A 50% discount will be applied to the article processing fee for submissions made between September 15, 2023 and October 31, 2023 by authors who have at least one publication in the European Journal of Chemistry (Voucher code: AUTHOR-3-2023).
3. Young writers will not be charged for the article processing fee between September 15, 2023 and October 31, 2023 (Voucher code: YOUNG2023).
Editor-in-Chief
European Journal of Chemistry
Keywords
Full Text:
PDF

DOI: 10.5155/eurjchem.12.3.256-264.2102
Links for Article
| | | | | | |
| | | | | | |
| | | |
Related Articles
Article Metrics


Funding information
The African-German Network of Excellence in Science (AGNES).
Citations
[1]. Chigozie Julius Ezeorah, Lilian Chinenye Ekowo, Samson Ifeanyi Eze, Tania Groutso, Simeon Atiga, Sunday Nwankwo Okafor, Nkechinyere Nwanneka Ukwueze, Obinna Chibueze Okpareke
Synthesis, characterization, and in silico studies of 2-[(E)-(2,5-dimethoxybenzylidene)amino]phenol and 3-[(E)-(2,5-dimethoxybenzylidene)amino]phenol
Journal of Molecular Structure 1270, 133902, 2022
DOI: 10.1016/j.molstruc.2022.133902

[2]. Bitrus Bikimi Ayiya, Obinna Chibueze Okpareke
N,N′-Di(pyridine-4-yl)-pyridine-3,5-dicarboxamide, a Pincer-Type Tricationic Compound; Synthesis, Crystal Structure, Hirshfeld Surface Analysis, and Computational Chemistry Studies
Journal of Chemical Crystallography 52(2), 174, 2022
DOI: 10.1007/s10870-021-00902-4

[3]. Suman Adhikari, Afzal Hussain Sheikh, Nabajyoti Baildya, Ghodrat Mahmoudi, Nurul Alam Choudhury, Obinna Okpareke, Tanushree Sen, Akalesh Kumar Verma, Rohit Kumar Singh, Surajit Pathak, Werner Kaminsky
Antiproliferative evaluation and supramolecular properties of a Pd(II) complex harvested from benzil bis(pyridyl hydrazone) ligand: Combined experimental and theoretical studies
Inorganic Chemistry Communications 152, 110646, 2023
DOI: 10.1016/j.inoche.2023.110646

[4]. David Izuchukwu Ugwu, Florence Uchenna Eze, Chigozie Julius Ezeorah, Lydia Rhyman, Ponnadurai Ramasami, Groutso Tania, Cosmas Chinweike Eze, Chiamaka Peace Uzoewulu, Blessing Chinweotito Ogboo, Obinna Chibueze Okpareke
Synthesis, Structure, Hirshfeld Surface Analysis, Non-Covalent Interaction, and In Silico Studies of 4-Hydroxy-1-[(4-Nitrophenyl)Sulfonyl]Pyrrolidine-2-Carboxyllic Acid
Journal of Chemical Crystallography 53(3), 386, 2023
DOI: 10.1007/s10870-023-00978-0

[5]. Florence Uchenna Eze, Chigozie Julius Ezeorah, Blessing Chinweotito Ogboo, Obinna Chibueze Okpareke, Lydia Rhyman, Ponnadurai Ramasami, Sunday Nwankwo Okafor, Groutso Tania, Simeon Atiga, Thomas Ugochukwu Ejiyi, Mirabel Chinasa Ugwu, Chiamaka Peace Uzoewulu, Jude Ikechukwu Ayogu, Ogechi Chinelo Ekoh, David Izuchukwu Ugwu
Structure and Computational Studies of New Sulfonamide Compound: {(4-nitrophenyl)sulfonyl}tryptophan
Molecules 27(21), 7400, 2022
DOI: 10.3390/molecules27217400

[6]. Induleka R Induleka R, Anushyaveera Chandrika P Chandrika P, Tamilselvi M Tamilselvi M, Ushanandhini S Ushanandhini S, Gowri M Gowri M
Evaluation of Anticancer Activity of Schiff bases Derived from Pyridine and their Metal Complexes- A Review
Oriental Journal Of Chemistry 38(3), 517, 2022
DOI: 10.13005/ojc/380302

[7]. Kodjo Djidjole Etse, Koffi Senam Etse, Marie-Luce Akossiwoa Quashie
Describing auxin solid state intermolecular interactions using contact descriptors, shape property and molecular fingerprint: comparison of pure auxin crystal and auxin-TIR1 co-crystal
European Journal of Chemistry 13(2), 172, 2022
DOI: 10.5155/eurjchem.13.2.172-179.2271

References
[1]. Fonkui, T. Y.; Ikhile, M. I.; Ndinteh, D. T.; Njobeh, P. B. Trop. J. Pharm. Res. 2019, 17 (12), 2507-2518.
https://doi.org/10.4314/tjpr.v17i12.29
[2]. Hegazy, W. H. Eur. J. Chem. 2014, 5 (3), 415-418.
https://doi.org/10.5155/eurjchem.5.3.415-418.1045
[3]. Kumar, H.; Chaudhary, R. P. Der Chemica Sinica 2010, 1 (2), 55-56.
https://doi.org/10.4103/0022-3859.68647
[4]. Asegbeloyin, J. N.; Ujam, O. T.; Okafor, E. C.; Babahan, I.; Coban, E. P.; Ozmen, A.; Biyik, H. Bioinorg. Chem. Appl. 2014, 2014, 718175.
[5]. Asegbeloyin, J. N.; Izuogu, D. C.; Oyeka, E. E.; Okpareke, O. C.; Ibezim, A. J. Mol. Struct. 2019, 1175, 219-229.
https://doi.org/10.1016/j.molstruc.2018.07.073
[6]. Arafath, M. A.; Adam, F.; Razali, M. R.; Ahmed Hassan, L. E.; Ahamed, M. B. K.; Majid, A. M. S. A. J. Mol. Struct. 2017, 1130, 791-798.
https://doi.org/10.1016/j.molstruc.2016.10.099
[7]. Hussein, T. I.; Ahmed, M. A.; Arbab, I. A.; Ibrahim, A. S.; Al-Bratty, M.; Alhazmi, H. A.; Najmi, A. Eur. J. Chem. 2020, 11 (1), 15-20.
https://doi.org/10.5155/eurjchem.11.1.15-20.1941
[8]. Andiappan, K.; Sanmugam, A.; Deivanayagam, E.; Karuppasamy, K.; Kim, H.-S.; Vikraman, D. Sci. Rep. 2018, 8 (1), 3054-3065.
https://doi.org/10.1038/s41598-018-21366-1
[9]. Malladi, S.; Isloor, A. M.; Isloor, S.; Akhila, D. S.; Fun, H.-K. Arab. J. Chem. 2013, 6 (3), 335-340.
https://doi.org/10.1016/j.arabjc.2011.10.009
[10]. El-Shekeil, A. G.; Abubakr, A. O.; Al-Aghbari, S. A.; Nassar, M. Y. Eur. J. Chem. 2014, 5 (3), 410-414.
https://doi.org/10.5155/eurjchem.5.3.410-414.996
[11]. Abd-Elzaher, M. M.; Labib, A. A.; Mousa, H. A.; Moustafa, S. A.; Ali, M. M.; El-Rashedy, A. A. Beni-Suef Univ. J. Basic Appl. Sci. 2016, 5 (1), 85-96.
https://doi.org/10.1016/j.bjbas.2016.01.001
[12]. Nagesh, G. Y.; Mahendra Raj, K.; Mruthyunjayaswamy, B. H. M. J. Mol. Struct. 2015, 1079, 423-432.
https://doi.org/10.1016/j.molstruc.2014.09.013
[13]. Bhat, M. A.; Al-Omar, M. A. Acta Pol. Pharm. 2011, 68 (3), 375-380.
[14]. Nithinchandra; Kalluraya, B.; Aamir, S.; Shabaraya, A. R. Eur. J. Med. Chem. 2012, 54, 597-604.
https://doi.org/10.1016/j.ejmech.2012.06.011
[15]. Ashutosh, K. Medicinal Chemistry; New Age International Ltd.: New Delhi, India, 2007; pp. 794.
[16]. Gibbs, J. B. Science 2000, 287 (5460), 1969-1973.
https://doi.org/10.1126/science.287.5460.1969
[17]. WHO Media Centre. Cancer https://www.who.int/en/news-room/fact-sheets/detail/cancer (accessed Apr 8, 2021).
[18]. Globocan Fact Stats, https://gco.iarc.fr/ (accessed Apr 8, 2021).
[19]. Giaccone, G. Drugs 2000, 59 (Supplement 4), 9-17.
https://doi.org/10.2165/00003495-200059004-00002
[20]. Fuertes, M. A.; Alonso, C.; Pérez, J. M. Chem. Rev. 2003, 103 (3), 645-662.
https://doi.org/10.1021/cr020010d
[21]. Gasser, G.; Ott, I.; Metzler-Nolte, N. J. Med. Chem. 2011, 54 (1), 3-25.
https://doi.org/10.1021/jm100020w
[22]. APEX-2. Bruker-Nonius AXS. 2008, Bruker AXS, Madison, Wisconsin, USA.
[23]. Sheldrick, G. M. Acta Crystallogr. A 2008, 64 (1), 112-122.
https://doi.org/10.1107/S0108767307043930
[24]. Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J. Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer17. The University of Western Australia, 2017.
[25]. Spackman, M. A.; McKinnon, J. J. CrystEngComm 2002, 4 (66), 378-392.
https://doi.org/10.1039/B203191B
[26]. Tan, S. L.; Jotani, M. M.; Tiekink, E. R. T. Acta Crystallogr. E Crystallogr. Commun. 2019, 75 (Pt 3), 308-318.
https://doi.org/10.1107/S2056989019001129
[27]. Molecular Operating Environment (MOE), 2010.01; Chemical Computing Group ULC, 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2010.
[28]. Ntie-Kang, F.; Nwodo, J. N.; Ibezim, A.; Simoben, C. V.; Karaman, B.; Ngwa, V. F.; Sippl, W.; Adikwu, M. U.; Mbaze, L. M. J. Chem. Inf. Model. 2014, 54 (9), 2433-2450.
https://doi.org/10.1021/ci5003697
[29]. Govindaraj, V.; Ramanathan, S. Turk. J. Chem. 2014, 38, 521-530.
https://doi.org/10.3906/kim-1301-83
[30]. Ejidike, I. P.; Ajibade, P. A.. Bioinorg. Chem. Appl. 2015, 2015, 890734.
[31]. Yusnita, J.; Puvaneswary, S.; Mohd. Ali, H.; Robinson, W. T.; Kwai-Lin, T. Polyhedron 2009, 28 (14), 3050-3054.
https://doi.org/10.1016/j.poly.2009.06.059
[32]. Tan, S. L.; Tiekink, E. R. T. Acta Crystallogr. E Crystallogr. Commun. 2020, 76 (Pt 1), 102-110.
https://doi.org/10.1107/S2056989019016840
[33]. Izuogu, D. C.; Asegbeloyin, J. N.; Jotani, M. M.; Tiekink, E. R. T. Acta Crystallogr. E Crystallogr. Commun. 2020, 76 (Pt 5), 697-702.
https://doi.org/10.1107/S2056989020005101
[34]. Mackenzie, C. F.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. IUCrJ 2017, 4 (Pt 5), 575-587.
https://doi.org/10.1107/S205225251700848X
[35]. Lipinski, C. A. J. Pharmacol. Toxicol. Methods 2000, 44 (1), 235-249.
https://doi.org/10.1016/S1056-8719(00)00107-6
[36]. Hast, M. A.; Fletcher, S.; Cummings, C. G.; Pusateri, E. E.; Blaskovich, M. A.; Rivas, K.; Gelb, M. H.; Van Voorhis, W. C.; Sebti, S. M.; Hamilton, A. D.; Beese, L. S. Chem. Biol. 2009, 16 (2), 181-192.
https://doi.org/10.1016/j.chembiol.2009.01.014
[37]. Shima, F.; Ijiri, Y.; Muraoka, S.; Liao, J.; Ye, M.; Araki, M.; Matsumoto, K.; Yamamoto, N.; Sugimoto, T.; Yoshikawa, Y.; Kumasaka, T.; Yamamoto, M.; Tamura, A.; Kataoka, T. J. Biol. Chem. 2010, 285 (29), 22696-22705.
https://doi.org/10.1074/jbc.M110.125161
Supporting information
The Supplementary Material for this article can be found online at: Supplementary files
How to cite
The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item
DOI Link: https://doi.org/10.5155/eurjchem.12.3.256-264.2102

















European Journal of Chemistry 2021, 12(3), 256-264 | doi: https://doi.org/10.5155/eurjchem.12.3.256-264.2102 | Get rights and content
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Authors

This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).
© Copyright 2010 - 2023 • Atlanta Publishing House LLC • All Right Reserved.
The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.
Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.