European Journal of Chemistry

Molecular docking analysis on the interaction between bovine serum albumin and three commercial fluoroquinolones: Ciprofloxacin, enrofloxacin and pefloxacin

Crossmark


Main Article Content

Otavio Augusto Chaves
Leonardo Vazquez

Abstract

Fluoroquinolones are a family of broad spectrum, systemic antibacterial agents that have been used as therapy for infections in the respiratory and alimentary tract in animals. The pharmacodynamic of this class is widely described, predominantly to the commercial drugs ciprofloxacin (CIP), enrofloxacin (ENR), and pefloxacin (PEF). Bovine serum albumin (BSA) is the main endogenous carrier in the bovine bloodstream, being responsible for the biodistribution of different classes of molecules and drugs, including fluoroquinolones. The molecular features and interaction between BSA and fluoroquinolones are not fully described, thus, the present work enlightens the intimacy of the interaction of BSA with CIP, ENR, PEF through structural modeling and molecular docking calculation approaches. The role of key amino acid residues was assessed, indicating that the main protein binding pocket is composed by Trp-212 residue playing an important stabilization for the three fluoroquinolones through both hydrogen bonding and van der Waals forces, where reside the individual structural differences observed among the three fluoroquinolones and BSA. There is a descriptive protagonism of carboxyl group on the ENR interaction which traps the molecule and avoids the deep communication in the protein binding pocket, as well as the ligands CIP and PEF showed an interface amino acid residue interaction profile higher than 70%.


icon graph This Abstract was viewed 823 times | icon graph Article PDF downloaded 407 times

How to Cite
(1)
Chaves, O. A.; Vazquez, L. Molecular Docking Analysis on the Interaction Between Bovine Serum Albumin and Three Commercial Fluoroquinolones: Ciprofloxacin, Enrofloxacin and Pefloxacin. Eur. J. Chem. 2021, 12, 192-196.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Drlica, K. Curr. Opin. Microbiol. 1999, 2, 504-508.
https://doi.org/10.1016/S1369-5274(99)00008-9

[2]. Brown, S. A. J. Vet. Pharmacol. Ther. 1996, 19, 1-14.
https://doi.org/10.1111/j.1365-2885.1996.tb00001.x

[3]. Gootz, T. D.; Brighty, K. E. Med. Res. Rev. 1996, 16, 433-486.
https://doi.org/10.1002/(SICI)1098-1128(199609)16:5<433::AID-MED3>3.0.CO;2-W

[4]. Singh, S.; Shukla, S.; Tandia, N.; Kumar, N.; Paliwal, R. Pharm. Sci. Monitor 2014, 5, 184-197. http://www.pharmasm.com/pdf_files/ 20140729051511_20_swatantra.pdf (accessed April 6, 2021).

[5]. Kumar, B. S.; Ashok, V.; Kalyani, P.; Nair, G. R. Vet. World 2016, 9, 410-416.
https://doi.org/10.14202/vetworld.2016.410-416

[6]. Committee for veterinary medicinal products. The European Agency for the Evaluation of Medicinal Products - Veterinary Medicines Evaluation Unit, https://www.ema.europa.eu/en/committees/ committee-medicinal-products-veterinary-use-cvmp (accessed April 6, 2021).

[7]. Anand, U.; Kurup, L.; Mukherjee, S. Phys. Chem. Chem. Phys. 2012, 14, 4250-4258.
https://doi.org/10.1039/c2cp00001f

[8]. Lizondo, M.; Pons, M.; Gallardo, M.; Estelrich, J. J. Pharm. Biomed. Anal. 1997, 15, 1845-1849.
https://doi.org/10.1016/S0731-7085(96)02033-X

[9]. Bryskier, A. Antibiotiques, agents antibactériens et antifongiques; 1st ed.; Ellipses Éditions Marketing, 1999.

[10]. Sárközy, G. Vet. Med. (Praha) 2001, 46, 257-274.
https://doi.org/10.17221/7883-VETMED

[11]. Lekeux, P.; Art, T. Vet. Rec. 1988, 123, 205-207.
https://doi.org/10.1136/vr.123.8.205

[12]. Entriken, T. L. Veterinary Pharmaceuticals and Biologicals; 12th ed.; Veterinary Medicine Pub Co, 2001.

[13]. Qin, J.; Sun, Y. Mod. Appl. Sci. 2009, 3, 112-114.

[14]. Bressolle, F.; Gonçalves, F.; Gouby, A.; Galtier, M. Clin. Pharmacokinet. 1994, 27, 418-446.
https://doi.org/10.2165/00003088-199427060-00003

[15]. Kronfeld, D. S.; Donoghue, S.; Copp, R. L.; Stearns, F. M.; Engle, R. H. J. Dairy Sci. 1982, 65, 1925-1933.
https://doi.org/10.3168/jds.S0022-0302(82)82440-5

[16]. Sułkowska, A.; Maciążek-Jurczyk, M.; Bojko, B.; Równicka, J.; Zubik-Skupień, I.; Temba, E.; Pentak, D.; Sułkowski, W. W. J. Mol. Struct. 2008, 881, 97-106.
https://doi.org/10.1016/j.molstruc.2007.09.001

[17]. He, X. M.; Carter, D. C. Nature 1992, 358, 209-215.
https://doi.org/10.1038/358209a0

[18]. Nerli, B.; Romanini, D.; Picó, G. Chem. Biol. Interact. 1997, 104, 179-202.
https://doi.org/10.1016/S0009-2797(97)00024-0

[19]. Chaves, O. A.; Schaeffer, E.; Sant'Anna, C. M. R.; Netto-Ferreira, J. C.; Cesarin-Sobrinho, D.; Ferreira, A. B. B. Mediterr. J. Chem. 2016, 5, 331-339.
https://doi.org/10.13171/mjc.5.1/0160113/ferreira

[20]. Chaves, O. A.; Amorim, A. P. de O.; Castro, L. H. E.; Sant'Anna, C. M. R.; de Oliveira, M. C. C.; Cesarin-Sobrinho, D.; Netto-Ferreira, J. C.; Ferreira, A. B. B. Molecules 2015, 20, 19526-19539.
https://doi.org/10.3390/molecules201019526

[21]. Chaves, O. A.; da Silva, V. A.; Sant'Anna, C. M. R.; Ferreira, A. B. B.; Ribeiro, T. A. N.; de Carvalho, M. G.; Cesarin-Sobrinho, D.; Netto-Ferreira, J. C. J. Mol. Struct. 2017, 1128, 606-611.
https://doi.org/10.1016/j.molstruc.2016.09.036

[22]. Shim, J. H.; Shen, J. Y.; Kim, M. R.; Lee, C. J.; Kim, I. S. J. Agric. Food Chem. 2003, 51, 7528-7532.
https://doi.org/10.1021/jf0346511

[23]. Seedher, N.; Agarwal, P. J. Lumin. 2010, 130, 1841-1848.
https://doi.org/10.1016/j.jlumin.2010.04.020

[24]. Yu, X.; Liu, R.; Ji, D.; Yang, F.; Li, X.; Xie, J.; Zhou, J.; Yi, P. J. Solution Chem. 2011, 40, 521-531.
https://doi.org/10.1007/s10953-011-9653-y

[25]. Ni, Y.; Su, S.; Kokot, S. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2010, 75, 547-552.
https://doi.org/10.1016/j.saa.2009.11.014

[26]. Liu, S.; Zhang, L.-W.; Zhang, X.-X. Anal. Sci. 2006, 22, 1515-1518.
https://doi.org/10.2116/analsci.22.1515

[27]. Hernández, M.; Aguilar, C.; Borrull, F.; Calull, M. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2002, 772, 163-172.
https://doi.org/10.1016/S1570-0232(02)00071-5

[28]. Yan, C.; Tong, J.; Xiong, D.; Liu, Y.; Pan, Z. Fenxi Huaxue 2006, 34, 796-800.
https://doi.org/10.1016/S1872-2040(06)60041-8

[29]. Maya, M. T.; Gonçalves, N. J.; Silva, N. B.; Morais, J. A. J. Chromatogr. 2001, 755, 305-309.
https://doi.org/10.1016/S0378-4347(01)00126-8

[30]. Dowling, P. M.; Wilson, R. C.; Tyler, J. W.; Duran, S. H. J. Vet. Pharmacol. Ther. 1995, 18, 7-12.
https://doi.org/10.1111/j.1365-2885.1995.tb00543.x

[31]. Papich, M. G. Am. J. Vet. Res. 2012, 73, 1085-1091.
https://doi.org/10.2460/ajvr.73.7.1085

[32]. Bujacz, A. Acta Crystallogr. D Biol. Crystallogr. 2012, 68, 1278-1289.
https://doi.org/10.1107/S0907444912027047

[33]. Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. J. Mol. Biol. 1997, 267, 727-748.
https://doi.org/10.1006/jmbi.1996.0897

[34]. Bujacz, A.; Zielinski, K.; Sekula, B. Proteins 2014, 82, 2199-2208.
https://doi.org/10.1002/prot.24583

[35]. Chaves, O. A.; Jesus, C. S. H.; Cruz, P. F.; Sant'Anna, C. M. R.; Brito, R. M. M.; Serpa, C. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 169, 175-181.
https://doi.org/10.1016/j.saa.2016.06.028

[36]. DeLano, W. L. PyMOL. https://pymol.org/2/ (accessed April 6, 2021).

[37]. Chaves, O.; Teixeira, F.; Guimarães, H.; Braz‑Filho, R.; Vieira, I. J.; Sant'Anna, C. M.; Netto-Ferreira, J. C.; Cesarin-Sobrinho, D.; Ferreira, A. J. Braz. Chem. Soc. 2016, 28, 1229-1236.

[38]. Yamasaki, K.; Chuang, V. T. G.; Maruyama, T.; Otagiri, M. Biochim. Biophys. Acta 2013, 1830, 5435-5443.
https://doi.org/10.1016/j.bbagen.2013.05.005

[39]. Chaves, O. A.; Soares, B. A.; Maciel, M. A. M.; Sant'Anna, C. M. R.; Netto-Ferreira, J. C.; Cesarin-Sobrinho, D.; Ferreira, A. B. B. J. Braz. Chem. Soc. 2016, 27, 1858-1865.

[40]. van der Spoel, D.; van Maaren, P. J.; Larsson, P.; Tîmneanu, N. J. Phys. Chem. B 2006, 110, 4393-4398.
https://doi.org/10.1021/jp0572535

[41]. Roth, C. M.; Neal, B. L.; Lenhoff, A. M. Biophys. J. 1996, 70, 977-987.
https://doi.org/10.1016/S0006-3495(96)79641-8

[42]. Silverstein, K. A. T.; Haymet, A. D. J.; Dill, K. A. J. Am. Chem. Soc. 2000, 122, 8037-8041.
https://doi.org/10.1021/ja000459t

[43]. Dereka, B.; Yu, Q.; Lewis, N. H. C.; Carpenter, W. B.; Bowman, J. M.; Tokmakoff, A. Science 2021, 371, 160-164.
https://doi.org/10.1126/science.abe1951

[44]. Naveenraj, S.; Anandan, S. J. Photochem. Photobiol. C: Photochem. Rev. 2013, 14, 53-71.
https://doi.org/10.1016/j.jphotochemrev.2012.09.001

[45]. Paul, B. K.; Samanta, A.; Guchhait, N. J. Phys. Chem. B 2010, 114, 6183-6196.
https://doi.org/10.1021/jp100004t

[46]. Chaves, O. A.; Jesus, C. S. H.; Henriques, E. S.; Brito, R. M. M.; Serpa, C. Photochem. Photobiol. Sci. 2016, 15, 1524-1535.
https://doi.org/10.1039/C6PP00209A

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).