European Journal of Chemistry 2021, 12(2), 179-186 | doi: https://doi.org/10.5155/eurjchem.12.2.179-186.2108 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Crystallographic identification of a novel 2,4,5-tri(N-methyl-4-pyridinium)-1,3-thiazole with a complex network of polyiodide/iodine counter ions and co-crystallized cyclododecasulfur (S12)


Ibukun Oluwaseun Shotonwa (1,*) orcid , Rene T. Boere (2) orcid

(1) Department of Chemistry, Lagos State University, Ojo, Lagos, 102101, Nigeria
(2) Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K3M4, Canada
(*) Corresponding Author

Received: 01 Feb 2021 | Revised: 26 Mar 2021 | Accepted: 05 Apr 2021 | Published: 30 Jun 2021 | Issue Date: June 2021

Abstract


The crystals of an unprecedented 2,4,5-tri(N-methylpyridinium)-1,3-thiazole are monoclinic and belong to the space group P21/c as determined by single-crystal XRD. Crystal data for C21H21I13N4S5.98: monoclinic, a = 7.5627(5) Å, b = 30.6764(19) Å, c = 20.8848(15) Å, β = 91.632(6)°, = 4843.2(6) Å3, Z = 4, T = 100.01(10) K, μ(Cu Kα) = 67.840 mm-1, Dcalc = 2.977 g/cm3, 17906 reflections measured (7.152° ≤ 2Θ ≤ 162.94°), 17906 unique (Rsigma = 0.0607) which were used in all calculations. The final R1 was 0.1366 (I > 2σ(I)) and wR2 was 0.3926 (all data). The crystal lattice contains 2,4,5-tri(N-methylpyridinium)-1,3-thiazole, molecular iodine and triiodide counterions which interact with one another to coordinatively form polyiodides, as well as a surprising co-crystallized neutral molecule of cyclododecasulfur (S12). Close monitoring of the synthetic procedure reveals chemical condensation and decomposition of the thioamide reagent to be the impetus for the formation of individual components of the crystal lattice. Analysis of the XRD, including a Hirshfeld surface analysis, shows that (a) the crystal lattice has a number of stabilizing Coulombic short contacts such as I∙∙∙I, I∙∙∙S, I∙∙∙C, and C∙∙∙S and non-classical C-H∙∙∙I and C-H∙∙∙S hydrogen bond interactions (b) the iodine/iodide network are major determinants in the stability of its crystal lattice despite the reduced occupancies of sulfur and (c) the Hirshfeld analysis in comparison with the conventional Mercury visualization program was able to simplify, identify and quantify complex atom-atom interactions such as H∙∙∙H and N∙∙∙I in its crystal lattice. Herein, it is reported, for the first time, the formation of co-crystallized, neutral cyclododecasulfur (S12) from thioamide as the sulfur source. S12 displays a consistent geometry and comparable average S-S distances, S-S-S angles and torsion angles with previously reported crystal structures of S12. The complex network facilitated by the formation of polyiodides via the interaction of symmetric and asymmetric triiodides and iodine has resulted in quite strong interactions that are less than the sums of the van der Waals radii of two connected atoms as well as an array of fascinating geometrical alignments such as T-shape, trigonal pyramidal and L-shape.


Keywords


Sulfur; Iodine; 1,3-Thiazole; Sulfur heterocycles; Crystal engineering; Single crystal structure

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.12.2.179-186.2108

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 198 times | icon graph PDF Article downloaded 40 times

Funding information


Lagos State University, Ojo, Lagos, 102101, Nigeria and The Natural Sciences and Engineering Research Council of Canada, Canada.

References


[1]. Fahim, A. M.; Farag, A. M.; Shaaban, M. R.; Ragab, E. A. Eur. J. Chem. 2018, 9 (1), 30-38.
https://doi.org/10.5155/eurjchem.9.1.30-38.1675

[2]. Saroha, M.; Khurana, J. M. New J Chem 2019, 43 (22), 8644-8650.
https://doi.org/10.1039/C9NJ01717H

[3]. Ripain, I. H. A.; Roslan, N.; Norshahimi, N. S.; Salleh, S. S. M.; Bunnori, N. M.; Ngah, N. Malays. J. Anal. Sci. 2019, 23 (2), 237-246.

[4]. Xu, Z.; Ba, M.; Zhou, H.; Cao, Y.; Tang, C.; Yang, Y.; He, R.; Liang, Y.; Zhang, X.; Li, Z.; Zhu, L.; Guo, Y.; Guo, C. Eur. J. Med. Chem. 2014, 85, 27-42.
https://doi.org/10.1016/j.ejmech.2014.07.072

[5]. Karale, U. B.; Krishna, V. S.; Krishna, E. V.; Choudhari, A. S.; Shukla, M.; Gaikwad, V. R.; Mahizhaveni, B.; Chopra, S.; Misra, S.; Sarkar, D.; Sriram, D.; Dusthackeer, V. N. A.; Rode, H. B. Eur. J. Med. Chem. 2019, 178, 315-328.
https://doi.org/10.1016/j.ejmech.2019.05.082

[6]. Thomae, D.; Perspicace, E.; Xu, Z.; Henryon, D.; Schneider, S.; Hesse, S.; Kirsch, G.; Seck, P. Tetrahedron 2009, 65 (15), 2982-2988.
https://doi.org/10.1016/j.tet.2009.01.104

[7]. Luqman, A.; Blair, V. L.; Brammananth, R.; Crellin, P. K.; Coppel, R. L.; Andrews, P. C. Eur. J. Inorg. Chem. 2016, 2016 (17), 2738-2749.
https://doi.org/10.1002/ejic.201600076

[8]. Shahbazi-Raz, F.; Amani, V.; Noruzi, E. B.; Safari, N.; Boča, R.; Titiš, J.; Notash, B. Inorg. Chim. Acta 2015, 435, 262-273.
https://doi.org/10.1016/j.ica.2015.07.003

[9]. Rimmer, E. L.; Bailey, R. D.; Pennington, W. T.; Hanks, T. W. J. Chem. Soc., Perkin Trans. 2 1998, No. 11, 2557-2562.
https://doi.org/10.1039/a708433a

[10]. Danten, Y.; Guillot, B.; Guissani, Y. J. Chem. Phys. 1992, 96 (5), 3795-3810.
https://doi.org/10.1063/1.462841

[11]. Blake, A.; Li, W.-S.; Lippolis, V.; Schröder, M.; A. Devillanova, F.; O. Gould, R.; Parsons, S.; Radek, C. Chem. Soc. Rev. 1998, 27 (3), 195-205.
https://doi.org/10.1039/a827195z

[12]. Savastano, M.; Bazzicalupi, C.; Gellini, C.; Bianchi, A. Crystals (Basel) 2020, 10 (5), 387-400.
https://doi.org/10.3390/cryst10050387

[13]. Wang, Y.; Xue, Y.; Wang, X.; Cui, Z.; Wang, L. J. Mol. Struct. 2014, 1074, 231-239.
https://doi.org/10.1016/j.molstruc.2014.05.062

[14]. Bailey, R. D.; Pennington, W. T. Acta Crystallogr. B 1995, 51 (5), 810-815.
https://doi.org/10.1107/S0108768194011778

[15]. Steudel, R.; Eckert, B. Solid Sulfur Allotropes Sulfur Allotropes. In Elemental Sulfur and Sulfur-Rich Compounds I; Springer Berlin Heidelberg: Berlin, Heidelberg, 2012; pp 1-80.
https://doi.org/10.1007/b12110

[16]. Shotonwa, I. O.; Boeré, R. T. IUCrdata 2018, 3 (11), 3, 181491-181493.
https://doi.org/10.1107/S2414314618014918

[17]. Kosower, E. M. J. Am. Chem. Soc. 1955, 77 (14), 3883-3885.
https://doi.org/10.1021/ja01619a060

[18]. Christ, W.; Rakow, D.; Strauss, S. J. Heterocycl. Chem. 1974, 11 (3), 397-399.
https://doi.org/10.1002/jhet.5570110323

[19]. Liebscher, J.; Hartmann, H. Justus Liebigs Ann. Chem. 1977, 1977 (6), 1005-1012.
https://doi.org/10.1002/jlac.197719770614

[20]. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42 (2), 339-341.
https://doi.org/10.1107/S0021889808042726

[21]. Sheldrick, G. M. Acta Crystallogr. A Found. Adv. 2015, 71 (Pt 1), 3-8.
https://doi.org/10.1107/S2053273314026370

[22]. Sheldrick, G. M. Acta Crystallogr. C Struct. Chem. 2015, 71 (Pt 1), 3-8.
https://doi.org/10.1107/S2053229614024218

[23]. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. J. Appl. Crystallogr. 2008, 41 (2), 466-470.
https://doi.org/10.1107/S0021889807067908

[24]. Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer17; University of Western Australia, 2017.

[25]. Galangau, O.; Delbaere, S.; Ratel-Ramond, N.; Rapenne, G.; Li, R.; Calupitan, J. P. D. C.; Nakashima, T.; Kawai, T. J. Org. Chem. 2016, 81 (22), 11282-11290.
https://doi.org/10.1021/acs.joc.6b02256

[26]. Pampa, K. J.; Abdoh, M. M. M.; Swaroop, T. R.; Rangappa, K. S.; Lokanath, N. K. Acta Crystallogr. Sect. E Struct. Rep. Online 2013, 69 (Pt 9), o1434.
https://doi.org/10.1107/S1600536813021259

[27]. Rai, S. K.; Gunnam, A.; Mannava, M. K. C.; Nangia, A. K. Cryst. Growth Des. 2020, 20 (2), 1035-1046.
https://doi.org/10.1021/acs.cgd.9b01365

[28]. Kutoglu, A.; Hellner, E. Angew. Chem. Int. Ed. Engl. 1966, 5 (11), 965-965.
https://doi.org/10.1002/anie.196609651

[29]. Steidel, J.; Steudel, R.; Kutoglu, A. Z. Anorg. Allg. Chem. 1981, 476 (5), 171-178.
https://doi.org/10.1002/zaac.19814760520

[30]. Atkins, P. W. S.; Atkins'. Inorganic Chemistry; Oxford University Press: Oxford; New York, 2010.

[31]. Batsanov, S. S. Inorg. Mater. 2001, 37 (9), 871-885.
https://doi.org/10.1023/A:1011625728803

[32]. Sütay, B.; Yurtsever, M.; Yurtsever, E. J. Mol. Model. 2014, 20 (10), 2445-2454.
https://doi.org/10.1007/s00894-014-2445-8


Supporting information


The Supplementary Material for this article can be found online at: Supplementary files

How to cite


Shotonwa, I.; Boere, R. Eur. J. Chem. 2021, 12(2), 179-186. doi:10.5155/eurjchem.12.2.179-186.2108
Shotonwa, I.; Boere, R. Crystallographic identification of a novel 2,4,5-tri(N-methyl-4-pyridinium)-1,3-thiazole with a complex network of polyiodide/iodine counter ions and co-crystallized cyclododecasulfur (S12). Eur. J. Chem. 2021, 12(2), 179-186. doi:10.5155/eurjchem.12.2.179-186.2108
Shotonwa, I., & Boere, R. (2021). Crystallographic identification of a novel 2,4,5-tri(N-methyl-4-pyridinium)-1,3-thiazole with a complex network of polyiodide/iodine counter ions and co-crystallized cyclododecasulfur (S12). European Journal of Chemistry, 12(2), 179-186. doi:10.5155/eurjchem.12.2.179-186.2108
Shotonwa, Ibukun, & Rene T. Boere. "Crystallographic identification of a novel 2,4,5-tri(N-methyl-4-pyridinium)-1,3-thiazole with a complex network of polyiodide/iodine counter ions and co-crystallized cyclododecasulfur (S12)." European Journal of Chemistry [Online], 12.2 (2021): 179-186. Web. 27 Oct. 2021
Shotonwa, Ibukun, AND Boere, Rene. "Crystallographic identification of a novel 2,4,5-tri(N-methyl-4-pyridinium)-1,3-thiazole with a complex network of polyiodide/iodine counter ions and co-crystallized cyclododecasulfur (S12)" European Journal of Chemistry [Online], Volume 12 Number 2 (30 June 2021)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.12.2.179-186.2108

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2021, 12(2), 179-186 | doi: https://doi.org/10.5155/eurjchem.12.2.179-186.2108 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2021  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2021 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.