European Journal of Chemistry

Crystallographic identification of a novel 2,4,5-tri(N-methyl-4-pyridinium)-1,3-thiazole with a complex network of polyiodide/iodine counter ions and co-crystallized cyclododecasulfur (S12)

Crossmark


Main Article Content

Ibukun Oluwaseun Shotonwa
Rene T. Boere

Abstract

The crystals of an unprecedented 2,4,5-tri(N-methylpyridinium)-1,3-thiazole are monoclinic and belong to the space group P21/c as determined by single-crystal XRD. Crystal data for C21H21I13N4S5.98: monoclinic, a = 7.5627(5) Å, b = 30.6764(19) Å, c = 20.8848(15) Å, β = 91.632(6)°, = 4843.2(6) Å3, Z = 4, T = 100.01(10) K, μ(Cu Kα) = 67.840 mm-1, Dcalc = 2.977 g/cm3, 17906 reflections measured (7.152° ≤ 2Θ ≤ 162.94°), 17906 unique (Rsigma = 0.0607) which were used in all calculations. The final R1 was 0.1366 (I > 2σ(I)) and wR2 was 0.3926 (all data). The crystal lattice contains 2,4,5-tri(N-methylpyridinium)-1,3-thiazole, molecular iodine and triiodide counterions which interact with one another to coordinatively form polyiodides, as well as a surprising co-crystallized neutral molecule of cyclododecasulfur (S12). Close monitoring of the synthetic procedure reveals chemical condensation and decomposition of the thioamide reagent to be the impetus for the formation of individual components of the crystal lattice. Analysis of the XRD, including a Hirshfeld surface analysis, shows that (a) the crystal lattice has a number of stabilizing Coulombic short contacts such as I∙∙∙I, I∙∙∙S, I∙∙∙C, and C∙∙∙S and non-classical C-H∙∙∙I and C-H∙∙∙S hydrogen bond interactions (b) the iodine/iodide network are major determinants in the stability of its crystal lattice despite the reduced occupancies of sulfur and (c) the Hirshfeld analysis in comparison with the conventional Mercury visualization program was able to simplify, identify and quantify complex atom-atom interactions such as H∙∙∙H and N∙∙∙I in its crystal lattice. Herein, it is reported, for the first time, the formation of co-crystallized, neutral cyclododecasulfur (S12) from thioamide as the sulfur source. S12 displays a consistent geometry and comparable average S-S distances, S-S-S angles and torsion angles with previously reported crystal structures of S12. The complex network facilitated by the formation of polyiodides via the interaction of symmetric and asymmetric triiodides and iodine has resulted in quite strong interactions that are less than the sums of the van der Waals radii of two connected atoms as well as an array of fascinating geometrical alignments such as T-shape, trigonal pyramidal and L-shape.


icon graph This Abstract was viewed 997 times | icon graph Article PDF downloaded 446 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Shotonwa, I. O.; Boere, R. T. Crystallographic Identification of a Novel 2,4,5-tri(N-Methyl-4-Pyridinium)-1,3-Thiazole With a Complex Network of Polyiodide Iodine Counter Ions and Co-Crystallized Cyclododecasulfur (S12). Eur. J. Chem. 2021, 12, 179-186.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Fahim, A. M.; Farag, A. M.; Shaaban, M. R.; Ragab, E. A. Eur. J. Chem. 2018, 9 (1), 30-38.
https://doi.org/10.5155/eurjchem.9.1.30-38.1675

[2]. Saroha, M.; Khurana, J. M. New J Chem 2019, 43 (22), 8644-8650.
https://doi.org/10.1039/C9NJ01717H

[3]. Ripain, I. H. A.; Roslan, N.; Norshahimi, N. S.; Salleh, S. S. M.; Bunnori, N. M.; Ngah, N. Malays. J. Anal. Sci. 2019, 23 (2), 237-246.

[4]. Xu, Z.; Ba, M.; Zhou, H.; Cao, Y.; Tang, C.; Yang, Y.; He, R.; Liang, Y.; Zhang, X.; Li, Z.; Zhu, L.; Guo, Y.; Guo, C. Eur. J. Med. Chem. 2014, 85, 27-42.
https://doi.org/10.1016/j.ejmech.2014.07.072

[5]. Karale, U. B.; Krishna, V. S.; Krishna, E. V.; Choudhari, A. S.; Shukla, M.; Gaikwad, V. R.; Mahizhaveni, B.; Chopra, S.; Misra, S.; Sarkar, D.; Sriram, D.; Dusthackeer, V. N. A.; Rode, H. B. Eur. J. Med. Chem. 2019, 178, 315-328.
https://doi.org/10.1016/j.ejmech.2019.05.082

[6]. Thomae, D.; Perspicace, E.; Xu, Z.; Henryon, D.; Schneider, S.; Hesse, S.; Kirsch, G.; Seck, P. Tetrahedron 2009, 65 (15), 2982-2988.
https://doi.org/10.1016/j.tet.2009.01.104

[7]. Luqman, A.; Blair, V. L.; Brammananth, R.; Crellin, P. K.; Coppel, R. L.; Andrews, P. C. Eur. J. Inorg. Chem. 2016, 2016 (17), 2738-2749.
https://doi.org/10.1002/ejic.201600076

[8]. Shahbazi-Raz, F.; Amani, V.; Noruzi, E. B.; Safari, N.; Boča, R.; Titiš, J.; Notash, B. Inorg. Chim. Acta 2015, 435, 262-273.
https://doi.org/10.1016/j.ica.2015.07.003

[9]. Rimmer, E. L.; Bailey, R. D.; Pennington, W. T.; Hanks, T. W. J. Chem. Soc., Perkin Trans. 2 1998, No. 11, 2557-2562.
https://doi.org/10.1039/a708433a

[10]. Danten, Y.; Guillot, B.; Guissani, Y. J. Chem. Phys. 1992, 96 (5), 3795-3810.
https://doi.org/10.1063/1.462841

[11]. Blake, A.; Li, W.-S.; Lippolis, V.; Schröder, M.; A. Devillanova, F.; O. Gould, R.; Parsons, S.; Radek, C. Chem. Soc. Rev. 1998, 27 (3), 195-205.
https://doi.org/10.1039/a827195z

[12]. Savastano, M.; Bazzicalupi, C.; Gellini, C.; Bianchi, A. Crystals (Basel) 2020, 10 (5), 387-400.
https://doi.org/10.3390/cryst10050387

[13]. Wang, Y.; Xue, Y.; Wang, X.; Cui, Z.; Wang, L. J. Mol. Struct. 2014, 1074, 231-239.
https://doi.org/10.1016/j.molstruc.2014.05.062

[14]. Bailey, R. D.; Pennington, W. T. Acta Crystallogr. B 1995, 51 (5), 810-815.
https://doi.org/10.1107/S0108768194011778

[15]. Steudel, R.; Eckert, B. Solid Sulfur Allotropes Sulfur Allotropes. In Elemental Sulfur and Sulfur-Rich Compounds I; Springer Berlin Heidelberg: Berlin, Heidelberg, 2012; pp 1-80.
https://doi.org/10.1007/b12110

[16]. Shotonwa, I. O.; Boeré, R. T. IUCrdata 2018, 3 (11), 3, 181491-181493.
https://doi.org/10.1107/S2414314618014918

[17]. Kosower, E. M. J. Am. Chem. Soc. 1955, 77 (14), 3883-3885.
https://doi.org/10.1021/ja01619a060

[18]. Christ, W.; Rakow, D.; Strauss, S. J. Heterocycl. Chem. 1974, 11 (3), 397-399.
https://doi.org/10.1002/jhet.5570110323

[19]. Liebscher, J.; Hartmann, H. Justus Liebigs Ann. Chem. 1977, 1977 (6), 1005-1012.
https://doi.org/10.1002/jlac.197719770614

[20]. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42 (2), 339-341.
https://doi.org/10.1107/S0021889808042726

[21]. Sheldrick, G. M. Acta Crystallogr. A Found. Adv. 2015, 71 (Pt 1), 3-8.
https://doi.org/10.1107/S2053273314026370

[22]. Sheldrick, G. M. Acta Crystallogr. C Struct. Chem. 2015, 71 (Pt 1), 3-8.
https://doi.org/10.1107/S2053229614024218

[23]. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. J. Appl. Crystallogr. 2008, 41 (2), 466-470.
https://doi.org/10.1107/S0021889807067908

[24]. Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer17; University of Western Australia, 2017.

[25]. Galangau, O.; Delbaere, S.; Ratel-Ramond, N.; Rapenne, G.; Li, R.; Calupitan, J. P. D. C.; Nakashima, T.; Kawai, T. J. Org. Chem. 2016, 81 (22), 11282-11290.
https://doi.org/10.1021/acs.joc.6b02256

[26]. Pampa, K. J.; Abdoh, M. M. M.; Swaroop, T. R.; Rangappa, K. S.; Lokanath, N. K. Acta Crystallogr. Sect. E Struct. Rep. Online 2013, 69 (Pt 9), o1434.
https://doi.org/10.1107/S1600536813021259

[27]. Rai, S. K.; Gunnam, A.; Mannava, M. K. C.; Nangia, A. K. Cryst. Growth Des. 2020, 20 (2), 1035-1046.
https://doi.org/10.1021/acs.cgd.9b01365

[28]. Kutoglu, A.; Hellner, E. Angew. Chem. Int. Ed. Engl. 1966, 5 (11), 965-965.
https://doi.org/10.1002/anie.196609651

[29]. Steidel, J.; Steudel, R.; Kutoglu, A. Z. Anorg. Allg. Chem. 1981, 476 (5), 171-178.
https://doi.org/10.1002/zaac.19814760520

[30]. Atkins, P. W. S.; Atkins'. Inorganic Chemistry; Oxford University Press: Oxford; New York, 2010.

[31]. Batsanov, S. S. Inorg. Mater. 2001, 37 (9), 871-885.
https://doi.org/10.1023/A:1011625728803

[32]. Sütay, B.; Yurtsever, M.; Yurtsever, E. J. Mol. Model. 2014, 20 (10), 2445-2454.
https://doi.org/10.1007/s00894-014-2445-8

Supporting Agencies

Lagos State University, Ojo, Lagos, 102101, Nigeria and The Natural Sciences and Engineering Research Council of Canada, Canada.
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).