European Journal of Chemistry 2021, 12(4), 377-381 | doi: https://doi.org/10.5155/eurjchem.12.4.377-381.2122 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Multivariate analysis of images in spectrophotometric methods: Quantification of soil organic matter


Pedro Augusto de Oliveira Morais (1,*) orcid , Diego Mendesde Souza (2) orcid , Beata Emoke Madari (3) orcid

(1) Brazilian Agricultural Research Corporation (EMBRAPA Arroz e Feijão), Santo Antônio de Goiás, GO 75375-000, Brazil
(2) Instituto de Criminalística, Polícia Civil do Distrito Federal, 70610-907, Brasília, DF, Brazil
(3) Brazilian Agricultural Research Corporation (EMBRAPA Arroz e Feijão), Santo Antônio de Goiás, GO 75375-000, Brazil
(*) Corresponding Author

Received: 05 May 2021 | Revised: 18 Jun 2021 | Accepted: 23 Jun 2021 | Published: 31 Dec 2021 | Issue Date: December 2021

Abstract


Soil organic matter (SOM) is usually quantified by Walkley-Black titration method or using a spectrophotometric method. This study proposes an alternative method for quantification of SOM using digital image from scanner and mathematical algorithms to replace titration and spectrophotometry procedures. For this, after SOM oxidation by potassium dichromate, digital images were acquired. Posteriorly, extraction of RGB color histograms from images have occurred, followed by the use of multivariate calibration method: partial least squares (PLS). Six soil samples were analyzed. We used the Walkley-Black method as reference. SOM was estimated by images using the PLS tool. The new method, besides being a fast, low cost, and more operational alternative, presented statistically equal results in relation to the reference method, as assessed by the Student t-test and F-test at 95 % confidence.


Announcements


Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.

1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization between July 1, 2022 and August 15, 2022 (Voucher code: SINGLE2022).

2. Young writers will not be charged for the article processing fee between July 1, 2022 and August 15, 2022 (Voucher code: YOUNG2022).

3. The article processing fee will not be charged from the articles containing a part of the PhD thesis between July 1, 2022 and August 15, 2022 (Voucher code: PhD2022).

Editor-in-Chief

European Journal of Chemistry

Keywords


Scanner; Digital images; Soil organic matter; Spectrophotometry; Partial least squares; Walkley-Black method

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.12.4.377-381.2122

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 309 times | icon graph PDF Article downloaded 64 times

Funding information


Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil

References


[1]. Schnitzer, M. A Lifetime Perspective on the Chemistry of Soil Organic Matter. In Advances in Agronomy; Elsevier, 1999; pp 1-58.
https://doi.org/10.1016/S0065-2113(08)60842-1

[2]. Yang, F.; Zhang, G.-L.; Yang, J.-L.; Li, D.-C.; Zhao, Y.-G.; Liu, F.; Yang, R.-M.; Yang, F. J. Hydrol. (Amst.) 2014, 519, 3086-3093.
https://doi.org/10.1016/j.jhydrol.2014.10.054

[3]. Shepherd M.A.; Harrison, R.; Webb, J. Soil Use Manag. 2002, 18 (3), 284-292.
https://doi.org/10.1079/SUM2002134

[4]. Gama-Rodrigues, A. C. Agrofor. Syst. 2011, 81 (3), 191-193.
https://doi.org/10.1007/s10457-011-9372-9

[5]. Carter, M. R. Agron. J. 2002, 94 (1), 38-47.
https://doi.org/10.2134/agronj2002.3800

[6]. Walkley, A.; Black, I. A. Soil Sci. 1934, 37 (1), 29-38.
https://doi.org/10.1097/00010694-193401000-00003

[7]. Raij, B. van; Andrade, J. C.; Cantarella, H.; Quaggio, J. A. Análise química para avaliação da fertilidade de solos tropicais; Instituto Agronômico: Campinas, 2001.

https://www.iac.sp.gov.br/publicacoes/arquivos/Raij_et_al_2001_Metod_Anal_IAC.pdf

[8]. Cohen, M. D.; Kargacin, B.; Klein, C. B.; Costa, M. Crit. Rev. Toxicol. 1993, 23 (3), 255-281.
https://doi.org/10.3109/10408449309105012

[9]. Chromium in the Natural and Human Environments; Nriagu, J. O., Nieboer, E., Eds.; John Wiley & Sons: Nashville, TN, 1988.

[10]. Souza, D. M. de; Morais, P. A. de O.; Matsushige, I.; Rosa, L. A. Rev. Bras. Cienc. Solo 2016, 40 (0).
https://doi.org/10.1590/18069657rbcs20150150

https://doi.org/10.1590/18069657rbcs20150150.
https://doi.org/10.1590/18069657rbcs20150150

[11]. Kirsten, W. J. Organic Elemental Analysis: Ultramicro, Micro and Trace Methods; Academic Press: San Diego, CA, 1984.

[12]. Ma, T. S. Elemental Analysis, Organic Compounds. In Encyclopedia of Physical Science and Technology; Elsevier, 2003; pp 393-405.
https://doi.org/10.1016/B0-12-227410-5/00220-9

[13]. Harris, D. C. Análise Química Quantitativa; 9th ed.; LTC: Rio de Janeiro, 2017.

[14]. Gatto, A.; Barros, N. F. de; Novais, R. F.; Silva, I. R.; Mendonça, E. de S.; Villani, E. M. de A. Rev. Bras. Cienc. Solo 2009, 33 (3), 735-740.
https://doi.org/10.1590/S0100-06832009000300026

[15]. Geladi, P.; Grahn, H. Multivariate Image Analysis; John Wiley & Sons: Chichester, England, 2000.
https://doi.org/10.1002/9780470027318.a8106

[16]. de Almeida, V. E.; da Costa, G. B.; de Sousa Fernandes, D. D.; Gonçalves Dias Diniz, P. H.; Brandao, D.; de Medeiros, A. C. D.; Veras, G. Anal. Bioanal. Chem. 2014, 406 (24), 5989-5995.
https://doi.org/10.1007/s00216-014-8015-1

[17]. Klimowicz, A. C.; Bose, P.; Nakoneshny, S. C.; Dean, M.; Huang, L.; Chandarana, S.; Magliocco, A. M.; Wayne Matthews, T.; Brockton, N. T.; Dort, J. C. Eur. J. Cancer 2012, 48 (14), 2166-2174.
https://doi.org/10.1016/j.ejca.2012.04.010

[18]. Borin, A.; Ferrão, M. F.; Mello, C.; Cordi, L.; Pataca, L. C. M.; Durán, N.; Poppi, R. J. Anal. Bioanal. Chem. 2007, 387 (3), 1105-1112.
https://doi.org/10.1007/s00216-006-0971-7

[19]. da Costa, A.; Helfer, G.; Barbosa, J.; Teixeira, I.; Santos, R.; dos Santos, R.; Voss, M.; Schlessner, S.; Barin, J. J. Braz. Chem. Soc. 2021, 32 (3), 675-683. https://doi.org/10.21577/0103-5053.20200199.
https://doi.org/10.21577/0103-5053.20200199

[20]. Diniz, P. H. G. D.; Dantas, H. V.; Melo, K. D. T.; Barbosa, M. F.; Harding, D. P.; Nascimento, E. C. L.; Pistonesi, M. F.; Band, B. S. F.; Araujo, M. C. U. U Anal. Methods 2012, 4 (9), 2648-2652.
https://doi.org/10.1039/c2ay25481f

[21]. Godinho, M. da S.; Pereira, R. O.; Ribeiro, K. de O.; Schimidt, F.; Oliveira, A. E. de; Oliveira, S. B. de. Quim. Nova 2008, 31 (6), 1485-1489.
https://doi.org/10.1590/S0100-40422008000600039

[22]. Silva, T. C. O.; Godinho, M. S.; de Oliveira, A. E. Lat. Am. Appl. Res. 2011, 41, 141-145.

http://www.scielo.org.ar/pdf/laar/v41n2/v41n2a07.pdf

[23]. Pinto, T. L. F.; Cicero, S. M.; Forti, V. A. Rev. Bras. Sementes 2007, 29 (3), 31-38.
https://doi.org/10.1590/S0101-31222007000300004

[24]. Flor, E. P. O.; Cicero, S. M.; França Neto, J. de B.; Krzyzanowski, F. C. Rev. Bras. Sementes 2004, 26 (1), 68-76.
https://doi.org/10.1590/S0101-31222004000100011

[25]. Lopez-Garcia, F.; Andreu-Garcia, G.; Blasco, J.; Aleixos, N.; Valiente, J.-M. Comput. Electron. Agric. 2010, 71 (2), 189-197.
https://doi.org/10.1016/j.compag.2010.02.001

[26]. Vilar, W. T. S.; Aranha, R. M.; Medeiros, E. P.; Pontes, M. J. C. J. Braz. Chem. Soc. 2015, 26 (1), 102-109.

[27]. Gomes, M. S.; Trevizan, L. C.; Nobrega, J. A.; Kamogawa, M. Y. Quim. Nova 2008, 31 (6), 1577-1581.
https://doi.org/10.1590/S0100-40422008000600050

[28]. Paciornik, S.; Yallouz, A. V.; Campos, R. C.; Gannerman, D. J. Braz. Chem. Soc. 2006, 17 (1), 156-161.
https://doi.org/10.1590/S0103-50532006000100022

[29]. Grasel, F. S.; Ferrão, M. F.; Helfer, G. A.; Costa, A. B. J. Braz. Chem. Soc. 2016, 27 (12), 2372-2377.

[30]. Coutinho, M.; Morais, C.; Neves, A.; Menezes, F.; Lima, K. J. Braz. Chem. Soc. 2017, 28 (12), 2500-2505.

[31]. Silva, L. C. da; Lima, D. F. de; Silva, J. A.; Morais, C. L. M. de; Albuquerque, B. L.; Bortoluzzi, A. J.; Domingos, J. B.; Araújo, R. M.; Menezes, F. G.; Lima, K. M. G. J. Braz. Chem. Soc. 2016, 27 (6), 1067-1077.

[32]. Santos, J. L. O.; Leite, O. D.; Vieira, A. D. M.; Jesus, D. S.; Kamogawa, M. Y. J. Braz. Chem. Soc. 2016, 27 (1), 70c76.

[33]. Gonçalves, T.; Rosa, L.; Março, P.; da Silva, L.; Gomes, S.; Matsushita, M.; Valderrama, P. J. Braz. Chem. Soc. 2020, 31 (9), 1955-1963.

[34]. Damasceno, D.; Toledo, T. G.; Godinho, M. S.; Silva, C. P. da; Oliveira, S. B. de; Oliveira, A. E. de. Quim. Nova 2015, 38 (6), 836-841.

[35]. Damasceno, D.; Toledo, T. G.; da Silva Soares, A.; Botelho de Oliveira, S.; Elcana de Oliveira, A. Anal. Methods 2016, 8 (43), 7832-7836.
https://doi.org/10.1039/C6AY02215D

[36]. de Oliveira Morais, P. A.; de Souza, D. M.; Madari, B. E.; Soares, A. da S.; de Oliveira, A. E. Microchem. J. 2019, 147, 775-781.
https://doi.org/10.1016/j.microc.2019.03.070

[37]. Morais, P. A. de O.; Souza, D. M. de; Madari, B. E.; Oliveira, A. E. de. Rev. Process. Quim. 2020, 14 (27), 9-16.
https://doi.org/10.19142/rpq.v14i27.573

[38]. Morais, P. A. de O.; Souza, D. M. de; Carvalho, M. T. de M.; Madari, B. E.; de Oliveira, A. E. Microchem. J. 2019, 146, 455-463.
https://doi.org/10.1016/j.microc.2019.01.009

[39]. de Oliveira Morais, P. A.; de Souza, D. M.; Madari, B. E.; de Oliveira, A. E. Comput. Electron. Agric. 2020, 174 (105435), 105435.
https://doi.org/10.1016/j.compag.2020.105435

[40]. Duchesne, C.; Liu, J. J.; MacGregor, J. F. Chemometr. Intell. Lab. Syst. 2012, 117, 116-128.
https://doi.org/10.1016/j.chemolab.2012.04.003

[41]. Kohl, S. K.; Landmark, J. D.; Stickle, D. F. J. Chem. Educ. 2006, 83 (4), 644-646.
https://doi.org/10.1021/ed083p644

[42]. Colzani, H.; Rodrigues, Q. E. A. G.; Fogaça, C.; Gelinski, J. M. L. N.; Pereira-Filho, E. R.; Borges, E. M. Quim. Nova 2017, 40 (7), 833-839.

[43]. Wold, S.; Sjöström, M.; Eriksson, L. Chemometr. Intell. Lab. Syst. 2001, 58 (2), 109-130.
https://doi.org/10.1016/S0169-7439(01)00155-1


How to cite


Morais, P.; Souza, D.; Madari, B. Eur. J. Chem. 2021, 12(4), 377-381. doi:10.5155/eurjchem.12.4.377-381.2122
Morais, P.; Souza, D.; Madari, B. Multivariate analysis of images in spectrophotometric methods: Quantification of soil organic matter. Eur. J. Chem. 2021, 12(4), 377-381. doi:10.5155/eurjchem.12.4.377-381.2122
Morais, P., Souza, D., & Madari, B. (2021). Multivariate analysis of images in spectrophotometric methods: Quantification of soil organic matter. European Journal of Chemistry, 12(4), 377-381. doi:10.5155/eurjchem.12.4.377-381.2122
Morais, Pedro, Diego Mendesde Souza, & Beata Emoke Madari. "Multivariate analysis of images in spectrophotometric methods: Quantification of soil organic matter." European Journal of Chemistry [Online], 12.4 (2021): 377-381. Web. 3 Jul. 2022
Morais, Pedro, Souza, Diego, AND Madari, Beata. "Multivariate analysis of images in spectrophotometric methods: Quantification of soil organic matter" European Journal of Chemistry [Online], Volume 12 Number 4 (31 December 2021)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.12.4.377-381.2122

CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2021, 12(4), 377-381 | doi: https://doi.org/10.5155/eurjchem.12.4.377-381.2122 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2022  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2022 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.