European Journal of Chemistry 2021, 12(3), 289-298 | doi: https://doi.org/10.5155/eurjchem.12.3.289-298.2127 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Response surface optimization and modeling of caffeine photocatalytic degradation using visible light responsive perovskite structured LaMnO3


Muktar Musa Ibrahim (1,*) orcid , Hamza Rabiu Sani (2) orcid , Khuzaifa Muhammad Yahuza (3) orcid , Aminu Hassan Yusuf (4) orcid , Ahmad Bello Bungudu (5) orcid

(1) Department of Chemistry, Faculty Science, Ahmadu Bello University, Zaria, 1044, Nigeria
(2) Department of Chemistry Faculty of Science, Federal University Dutsen-Ma, 82101, Nigeria
(3) Department of Chemistry, Faculty of Science, Abubakar Tafawa Balewa University, Bauchi, 740211, Nigeria
(4) School of Physical and Chemical Sciences, University of Canterbury, Christ-Church, 8140, New Zealand
(5) Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
(*) Corresponding Author

Received: 13 May 2021 | Revised: 01 Jul 2021 | Accepted: 08 Jul 2021 | Published: 30 Sep 2021 | Issue Date: September 2021

Abstract


Caffeine is a refractory pollutant of emerging concern that evades conventional waste-water treatment techniques. Here, we report the synthesis of visible light responsive perovskite structured LaMnO­3 photocatalyst using modified Pechini method and utilized it as an efficient photocatalyst for caffeine degradation. XRD, BET, UV-Vis, NH3-TPD, and SEM were used to characterize the photocatalyst. Response surface methodology using Central composite design was used to investigate the effect of three operational variables; catalyst dosage, initial caffeine concentration and pH on the caffeine photocatalytic degradation efficiency. The functional relationship between these operational variables and caffeine photocatalytic degradation efficiency was established be a second order polynomial model. The results of the response surface analysis indicate caffeine degradation efficiency is most significantly affected by catalyst dosage and pH. The optimal values of operational obtained by response surface optimization were found be 3.5 g/L for catalyst dosage, 7.9 and 44.6 mg/L for pH and initial caffeine concentration respectively given the caffeine degradation efficiency of 93.9%.


Keywords


Caffeine; Pollutants; Perovskites; Optimization; Photocatalysis; Photodegradation

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.12.3.289-298.2127

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 156 times | icon graph PDF Article downloaded 44 times


References


[1]. Geissen, V.; Mol, H.; Klumpp, E.; Umlauf, G.; Nadal, M.; van der Ploeg, M.; van de Zee, S. E. A. T. M.; Ritsema, C. J. Int. Soil Water Conserv. Res. 2015, 3 (1), 57-65.
https://doi.org/10.1016/j.iswcr.2015.03.002

[2]. Nawrot, P.; Jordan, S.; Eastwood, J.; Rotstein, J.; Hugenholtz, A.; Feeley, M. Food Addit. Contam. 2003, 20 (1), 1-30.
https://doi.org/10.1080/0265203021000007840

[3]. Moore, M. T.; Greenway, S. L.; Farris, J. L.; Guerra, B. Arch. Environ. Contam. Toxicol. 2008, 54 (1), 31-35.
https://doi.org/10.1007/s00244-007-9059-4

[4]. Ibrahim, M. M.; Gaya, U. I. J. Chil. Chem. Soc. 2019, 64 (1), 4275-4284.
https://doi.org/10.4067/s0717-97072019000104275

[5]. Sahoo, C.; Gupta, A. K. J. Hazard. Mater. 2012, 215-216, 302-310.
https://doi.org/10.1016/j.jhazmat.2012.02.072

[6]. Kumar, A.; Kumar, S.; Krishnan, V. Perovskite-Based Materials for Photocatalytic Environmental Remediation. In Environmental Chemistry for a Sustainable World; Springer International Publishing: Cham, 2019; pp 139-165.
https://doi.org/10.1007/978-3-030-10609-6_5

[7]. Susanti, Y. D.; Afifah, N.; Saleh, R. Comparison between Photo- and Sono- Catalytic Activities of LaMnO3/Fe3O4/NGP to Remove Methylene Blue from Wastewater; AIP Conference Proceedings, 1-6, 2018. Available online: https://doi.org/10.1063/1.5064033
https://doi.org/10.1063/1.5064033

[8]. Gaya, U. I. Eur. J. Chem. 2011, 2 (2), 163-167.
https://doi.org/10.5155/eurjchem.2.2.163-167.369

[9]. Sujatha, G.; Shanthakumar, S.; Chiampo, F. Environments 2020, 7 (6), 47.
https://doi.org/10.3390/environments7060047

[10]. Barrocas, B.; Neves, M. C.; Conceicao Oliveira, M.; Monteiro, O. C. Environ. Sci. Nano 2018, 5 (2), 350-361.
https://doi.org/10.1039/C7EN00882A

[11]. Wang, Y.; Wang, Y.; Yu, L.; Wang, J.; Du, B.; Zhang, X. Chem. Eng. J. 2019, 368, 115-128.
https://doi.org/10.1016/j.cej.2019.02.174

[12]. Vu, A.-T.; Tuyet Pham, T. A.; Tran, T. T.; Nguyen, X. T.; Tran, T. Q.; Tran, Q. T.; Nguyen, T. N.; Van Doan, T.; Vi, T. D.; Nguyen, C. L.; Nguyen, M. V.; Lee, C.-H. Bull. Chem. React. Eng. Catal. 2020, 15 (1), 264-279.
https://doi.org/10.9767/bcrec.15.1.5892.264-279

[13]. Dhiman, T. K.; Singh, S. Phys. Status Solidi (a) 2019, 216 (11), 1900012.
https://doi.org/10.1002/pssa.201900012

[14]. Ghiasi, E.; Malekzadeh, A. J. Inorg. Organomet. Polym. Mater. 2020, 30 (7), 2789-2804.
https://doi.org/10.1007/s10904-019-01438-z

[15]. Abdolrahmani, M.; Parvari, M.; Habibpoor, M. Cuihua Xuebao/Chin. J. Catalysis 2010, 31 (4), 394-403.
https://doi.org/10.1016/S1872-2067(09)60059-0

[16]. Shaterian, M.; Enhessari, M.; Rabbani, D.; Asghari, M.; Salavati-Niasari, M. Appl. Surf. Sci. 2014, 318, 213-217.
https://doi.org/10.1016/j.apsusc.2014.03.087

[17]. Abdullah, E. A. Eur. J. Chem. 2019, 10 (1), 82-94.
https://doi.org/10.5155/eurjchem.10.1.82-94.1809

[18]. Hu, J.; Ma, J.; Wang, L.; Huang, H. J. Alloys Compd. 2014, 583, 539-545.
https://doi.org/10.1016/j.jallcom.2013.09.030

[19]. Hu, J.; Ma, J.; Wang, L.; Huang, H.; Ma, L. Powder Technol. 2014, 254, 556-562.
https://doi.org/10.1016/j.powtec.2014.01.071

[20]. Azfar, A. K.; Kasim, M. F.; Lokman, I. M.; Rafaie, H. A.; Mastuli, M. S. R. Soc. Open Sci. 2020, 7 (2), 191590.
https://doi.org/10.1098/rsos.191590

[21]. Pei, Z.; Wang, P.; Li, Z. Eur. J. Chem. 2019, 10 (1), 7-11
https://doi.org/10.5155/eurjchem.10.1.7-11.1824

[22]. Sakkas, V. A.; Islam, M. A.; Stalikas, C.; Albanis, T. A. J. Hazard. Mater. 2010, 175 (1-3), 33-44.
https://doi.org/10.1016/j.jhazmat.2009.10.050

[23]. Arandiyan, H.; Wang, Y.; Scott, J.; Mesgari, S.; Dai, H.; Amal, R. ACS Appl. Mater. Interfaces 2018, 10 (19), 16352-16357.
https://doi.org/10.1021/acsami.8b00889


How to cite


Ibrahim, M.; Sani, H.; Yahuza, K.; Yusuf, A.; Bungudu, A. Eur. J. Chem. 2021, 12(3), 289-298. doi:10.5155/eurjchem.12.3.289-298.2127
Ibrahim, M.; Sani, H.; Yahuza, K.; Yusuf, A.; Bungudu, A. Response surface optimization and modeling of caffeine photocatalytic degradation using visible light responsive perovskite structured LaMnO3. Eur. J. Chem. 2021, 12(3), 289-298. doi:10.5155/eurjchem.12.3.289-298.2127
Ibrahim, M., Sani, H., Yahuza, K., Yusuf, A., & Bungudu, A. (2021). Response surface optimization and modeling of caffeine photocatalytic degradation using visible light responsive perovskite structured LaMnO3. European Journal of Chemistry, 12(3), 289-298. doi:10.5155/eurjchem.12.3.289-298.2127
Ibrahim, Muktar, Hamza Rabiu Sani, Khuzaifa Muhammad Yahuza, Aminu Hassan Yusuf, & Ahmad Bello Bungudu. "Response surface optimization and modeling of caffeine photocatalytic degradation using visible light responsive perovskite structured LaMnO3." European Journal of Chemistry [Online], 12.3 (2021): 289-298. Web. 28 Nov. 2021
Ibrahim, Muktar, Sani, Hamza, Yahuza, Khuzaifa, Yusuf, Aminu, AND Bungudu, Ahmad. "Response surface optimization and modeling of caffeine photocatalytic degradation using visible light responsive perovskite structured LaMnO3" European Journal of Chemistry [Online], Volume 12 Number 3 (30 September 2021)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.12.3.289-298.2127

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2021, 12(3), 289-298 | doi: https://doi.org/10.5155/eurjchem.12.3.289-298.2127 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2021  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2021 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.