European Journal of Chemistry 2021, 12(4), 488-492 | doi: https://doi.org/10.5155/eurjchem.12.4.488-492.2152 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | REVIEW ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

The use of zebrafish to evaluate neuropharmacology of the gold nanoparticles


Guilherme Carneiro Montes (1,*) orcid

(1) Department of Pharmacology and Psychobiology, Roberto Alcantara Gomes Institute Biology (IBRAG), Rio de Janeiro State University (UERJ), Rio de Janeiro, 20551-030, Brazil
(*) Corresponding Author

Received: 16 Jul 2021 | Revised: 11 Sep 2021 | Accepted: 14 Sep 2021 | Published: 31 Dec 2021 | Issue Date: December 2021

Abstract


Zebrafish (Danio rerio) is a vertebrate animal used in animal model research with complex brains and behaviors similar to humans and associate with low coast become a model attractive for the academic community to seek zebrafish for scientific research. Studies on diseases of the central nervous system (CNS) have advanced and news therapeutic agents were developed for treatment these disorders. Reports suggest that the zebrafish model supports the neurodegenerative studies due functional conservation between human genes implicated in neurodegenerative disorders. The discovery of therapeutic compounds for CNS using the zebrafish model allows to show a neuroprotective action or neurotoxicity that might alter the behavioral changes. Neurotoxicity tests might perform in zebrafish’s embryos into 96 multi-well plates, which reduces the amount of substances used and cost. The bioactive compounds able to penetrate the blood-brain barrier (BBB) have important role physicochemical properties that might be desirable pharmacological effects and zebrafish trials allow if the substances might penetrate BBB and to exert central activity. The assays zebrafish are used to analyze nanoparticles that are small molecules used to explore variety applications in human health. Gold nanoparticles (AuNPs) has important properties which are extremely interest for pharmaceutical area such as drug delivery, cellular imaging, diagnostics, and therapeutic agents. Gold nanoparticles enhances Parkinson symptoms and improved neuroinflammation. Some studies show zebrafish might use to evaluate gold nanoparticles for human health hazard and toxicity studies. There is enormous potential for zebrafish in preclinical assays due to predict pharmacological and toxicity effects. Specific guidelines focused on methodologies in the zebrafish are needed to ensure adequate reproducible trials.


Announcements


Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.

1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization between July 1, 2022 and August 15, 2022 (Voucher code: SINGLE2022).

2. Young writers will not be charged for the article processing fee between July 1, 2022 and August 15, 2022 (Voucher code: YOUNG2022).

3. The article processing fee will not be charged from the articles containing a part of the PhD thesis between July 1, 2022 and August 15, 2022 (Voucher code: PhD2022).

Editor-in-Chief

European Journal of Chemistry

Keywords


Zebrafish; Neurotoxicity; Nanomaterials; Central activity; Gold nanoparticles; Central nervous system; Pharmacological therapeutics

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.12.4.488-492.2152

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 186 times | icon graph PDF Article downloaded 48 times


References


[1]. Chakraborty, C.; Sharma, A. R.; Sharma, G.; Lee, S.-S. J. Nanobiotechnology 2016, 14 (1), 65. https://doi.org/10.1186/ s12951-016-0217-6.
https://doi.org/10.1186/s12951-016-0217-6

[2]. Salamanca-Buentello, F.; Persad, D. L.; Court, E. B.; Martin, D. K.; Daar, A. S.; Singer, P. A. PLoS Med. 2005, 2 (5), e97.
https://doi.org/10.1371/journal.pmed.0020097

[3]. Boverhof, D. R.; Bramante, C. M.; Butala, J. H.; Clancy, S. F.; Lafranconi, M.; West, J.; Gordon, S. C. Regul. Toxicol. Pharmacol. 2015, 73 (1), 137-150.
https://doi.org/10.1016/j.yrtph.2015.06.001

[4]. Wolfram, J.; Ferrari, M. Nano Today 2019, 25, 85-98.
https://doi.org/10.1016/j.nantod.2019.02.005

[5]. Theis, T.; Parr, D.; Binks, P.; Ying, J.; Drexler, K. E.; Schepers, E.; Mullis, K.; Bai, C.; Boland, J. J.; Langer, R.; Dobson, P.; Rao, C. N.; Ferrari, M. Nat. Nanotechnol. 2006, 1 (1), 8-10.

[6]. Xu, L.; Liu, Y.; Chen, Z.; Li, W.; Liu, Y.; Wang, L.; Liu, Y.; Wu, X.; Ji, Y.; Zhao, Y.; Ma, L.; Shao, Y.; Chen, C. Lett. 2012, 12 (4), 2003-2012.
https://doi.org/10.1021/nl300027p

[7]. Barenholz, Y. J. Control. Release 2012, 160 (2), 117-134.
https://doi.org/10.1016/j.jconrel.2012.03.020

[8]. Beg, M. S.; Brenner, A. J.; Sachdev, J.; Borad, M.; Kang, Y.-K.; Stoudemire, J.; Smith, S.; Bader, A. G.; Kim, S.; Hong, D. S. Invest. New Drugs 2017, 35 (2), 180-188.
https://doi.org/10.1007/s10637-016-0407-y

[9]. Freitas, R. A. Stud Health Technol. Inform. 2009, 149, 251-256.
https://doi.org/10.1007/s11098-009-9335-4

[10]. Missaoui, W. N.; Arnold, R. D.; Cummings, B. S. Chem. Biol. Interact. 2018, 295, 1-12.
https://doi.org/10.1016/j.cbi.2018.07.015

[11]. Maynard, A. D.; Warheit, D. B.; Philbert, M. A. Toxicol. Sci. 2011, 120 (Supplement 1), S109-S129.
https://doi.org/10.1093/toxsci/kfq372

[12]. Sant, K. E.; Timme-Laragy, A. R. Curr. Environ. Health Rep. 2018, 5 (1), 125-133.
https://doi.org/10.1007/s40572-018-0183-2

[13]. Belyaeva, N. F.; Kashirtseva, V. N.; Medvedeva, N. V.; Khudoklinova, Y. Y.; Ipatova, O. M.; Archakov, A. I. Biomed. Khim. 2010, 56 (1), 120-131.
https://doi.org/10.18097/pbmc20105601120

[14]. d'Amora, M.; Giordani, S. Front. Neurosci. 2018, 12, 976. https://doi.org/10.3389/fnins.2018.00976.
https://doi.org/10.3389/fnins.2018.00976

[15]. de Abreu, M. S.; Genario, R.; Giacomini, A. C. V. V.; Demin, K. A.; Lakstygal, A. M.; Amstislavskaya, T. G.; Fontana, B. D.; Parker, M. O.; Kalueff, A. V. Neuroscience 2020, 445, 3-11.
https://doi.org/10.1016/j.neuroscience.2019.08.034

[16]. Fontana, B. D.; Mezzomo, N. J.; Kalueff, A. V.; Rosemberg, D. B. Exp. Neurol. 2018, 299, 157-171.
https://doi.org/10.1016/j.expneurol.2017.10.004

[17]. Hoo, J. Y.; Kumari, Y.; Shaikh, M. F.; Hue, S. M.; Goh, B. H. Biomed Res. Int. 2016, 2016, 9732780.
https://doi.org/10.1155/2016/9732780

[18]. Kalueff, A. V.; Echevarria, D. J.; Homechaudhuri, S.; Stewart, A. M.; Collier, A. D.; Kaluyeva, A. A.; Li, S.; Liu, Y.; Chen, P.; Wang, J.; Yang, L.; Mitra, A.; Pal, S.; Chaudhuri, A.; Roy, A.; Biswas, M.; Roy, D.; Podder, A.; Poudel, M. K.; Katare, D. P.; Mani, R. J.; Kyzar, E. J.; Gaikwad, S.; Nguyen, M.; Song, C. Aquat. Toxicol. 2016, 170, 297-309.
https://doi.org/10.1016/j.aquatox.2015.08.007

[19]. Chakraborty, C.; Agoramoorthy, G. Riv. Biol. 2010, 103 (1), 25-57.

[20]. Strähle, U.; Scholz, S.; Geisler, R.; Greiner, P.; Hollert, H.; Rastegar, S.; Schumacher, A.; Selderslaghs, I.; Weiss, C.; Witters, H.; Braunbeck, T. Reprod. Toxicol. 2012, 33 (2), 128-132.
https://doi.org/10.1016/j.reprotox.2011.06.121

[21]. Gao, J.; Mahapatra, C. T.; Mapes, C. D.; Khlebnikova, M.; Wei, A.; Sepúlveda, M. S. Nanotoxicology 2016, 10 (9), 1363-1372.
https://doi.org/10.1080/17435390.2016.1214763

[22]. Zhao, X.; Pack, M. Methods Cell Biol. 2017, 138, 241-270.
https://doi.org/10.1016/bs.mcb.2016.11.006

[23]. Carnovali, M.; Banfi, G.; Mariotti, M. Biomed Res. Int. 2019, 2019, 1-13.
https://doi.org/10.1155/2019/1253710

[24]. Howe, K.; Clark, M. D.; Torroja, C. F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J. E.; Humphray, S.; McLaren, K.; Matthews, L.; McLaren, S.; Sealy, I.; Caccamo, M.; Churcher, C.; Scott, C.; Barrett, J. C.; Koch, R.; Rauch, G.-J.; White, S.; Chow, W.; Kilian, B.; Quintais, L. T.; Guerra-Assunção, J. A.; Zhou, Y.; Gu, Y.; Yen, J.; Vogel, J.-H.; Eyre, T.; Redmond, S.; Banerjee, R.; Chi, J.; Fu, B.; Langley, E.; Maguire, S. F.; Laird, G. K.; Lloyd, D.; Kenyon, E.; Donaldson, S.; Sehra, H.; Almeida-King, J.; Loveland, J.; Trevanion, S.; Jones, M.; Quail, M.; Willey, D.; Hunt, A.; Burton, J.; Sims, S.; McLay, K.; Plumb, B.; Davis, J.; Clee, C.; Oliver, K.; Clark, R.; Riddle, C.; Elliott, D.; Threadgold, G.; Harden, G.; Ware, D.; Begum, S.; Mortimore, B.; Kerry, G.; Heath, P.; Phillimore, B.; Tracey, A.; Corby, N.; Dunn, M.; Johnson, C.; Wood, J.; Clark, S.; Pelan, S.; Griffiths, G.; Smith, M.; Glithero, R.; Howden, P.; Barker, N.; Lloyd, C.; Stevens, C.; Harley, J.; Holt, K.; Panagiotidis, G.; Lovell, J.; Beasley, H.; Henderson, C.; Gordon, D.; Auger, K.; Wright, D.; Collins, J.; Raisen, C.; Dyer, L.; Leung, K.; Robertson, L.; Ambridge, K.; Leongamornlert, D.; McGuire, S.; Gilderthorp, R.; Griffiths, C.; Manthravadi, D.; Nichol, S.; Lee, C.; Westerfield, M.; de Jong, P. J.; Zon, L. I.; Postlethwait, J. H.; Nüsslein-Volhard, C.; Hubbard, T. J. P.; Crollius, H. R.; Rogers, J.; Stemple, D. L. Nature 2013, 496 (7446), 498-503.
https://doi.org/10.1038/nature12111

[25]. Cabuzu, D.; Cirja, A.; Puiu, R.; Grumezescu, A. M. Curr. Top. Med. Chem. 2015, 15 (16), 1605-1613.
https://doi.org/10.2174/1568026615666150414144750

[26]. Aminabad, N. S.; Farshbaf, M.; Akbarzadeh, A. Cell Biochem. Biophys. 2019, 77 (2), 123-137.
https://doi.org/10.1007/s12013-018-0863-4

[27]. Nicol, J. R.; Dixon, D.; Coulter, J. A. Nanomedicine (Lond.) 2015, 10 (8), 1315-1326.
https://doi.org/10.2217/nnm.14.219

[28]. Boisselier, E.; Astruc, D. Chem. Soc. Rev. 2009, 38 (6), 1759-1782.
https://doi.org/10.1039/b806051g

[29]. Davis, A. A.; Leyns, C. E. G.; Holtzman, D. M. Annu. Rev. Cell Dev. Biol. 2018, 34 (1), 545-568.
https://doi.org/10.1146/annurev-cellbio-100617-062636

[30]. Dugger, B. N.; Dickson, D. W. Cold Spring Harb. Perspect. Biol. 2017, 9 (7), a028035.
https://doi.org/10.1101/cshperspect.a028035

[31]. Babin, P. J.; Goizet, C.; Raldúa, D. Prog. Neurobiol. 2014, 118, 36-58.
https://doi.org/10.1016/j.pneurobio.2014.03.001

[32]. Lee, J.; Freeman, J. L. Neurotoxicology 2014, 43, 57-64.
https://doi.org/10.1016/j.neuro.2014.03.008

[33]. Cassar, S.; Adatto, I.; Freeman, J. L.; Gamse, J. T.; Iturria, I.; Lawrence, C.; Muriana, A.; Peterson, R. T.; Van Cruchten, S.; Zon, L. I. Res. Toxicol. 2020, 33 (1), 95-118.
https://doi.org/10.1021/acs.chemrestox.9b00335

[34]. Fan, C.-Y.; Cowden, J.; Simmons, S. O.; Padilla, S.; Ramabhadran, R. Neurotoxicol. Teratol. 2010, 32 (1), 91-98.
https://doi.org/10.1016/j.ntt.2009.04.065

[35]. Lee, J.; Peterson, S. M.; Freeman, J. L. Neurogenetics 2016, 17 (3), 197-199.
https://doi.org/10.1007/s10048-016-0485-1

[36]. Xi, Y.; Noble, S.; Ekker, M. Curr. Neurol. Neurosci. Rep. 2011, 11 (3), 274-282.
https://doi.org/10.1007/s11910-011-0182-2

[37]. Martín-Jiménez, R.; Campanella, M.; Russell, C. Curr. Neurol. Neurosci. Rep. 2015, 15 (6), 33.
https://doi.org/10.1007/s11910-015-0555-z

[38]. Hwang, W. Y.; Fu, Y.; Reyon, D.; Maeder, M. L.; Kaini, P.; Sander, J. D.; Joung, J. K.; Peterson, R. T.; Yeh, J.-R. J. PLoS One 2013, 8 (7), e68708.
https://doi.org/10.1371/journal.pone.0068708

[39]. van Bebber, F.; Hruscha, A.; Willem, M.; Schmid, B.; Haass, C. J. Neurochem. 2013, 127 (4), 471-481.
https://doi.org/10.1111/jnc.12198

[40]. Song, P.; Pimplikar, S. W. PLoS One 2012, 7 (4), e34209.
https://doi.org/10.1371/journal.pone.0034209

[41]. Bretaud, S.; Allen, C.; Ingham, P. W.; Bandmann, O. J. Neurochem. 2006, 100 (6), 1626-1635.

[42]. Armstrong, G. A. B.; Liao, M.; You, Z.; Lissouba, A.; Chen, B. E.; Drapeau, P. PLoS One 2016, 11 (3), e0150188.
https://doi.org/10.1371/journal.pone.0150188

[43]. Bandmann, O.; Burton, E. A. Neurobiol. Dis. 2010, 40 (1), 58-65.
https://doi.org/10.1016/j.nbd.2010.05.017

[44]. Borsook, D. Brain 2012, 135 (2), 320-344.
https://doi.org/10.1093/brain/awr271

[45]. Kalueff, A. V.; Stewart, A. M.; Gerlai, R. Trends Pharmacol. Sci. 2014, 35 (2), 63-75.
https://doi.org/10.1016/j.tips.2013.12.002

[46]. Cachat, J.; Stewart, A.; Utterback, E.; Hart, P.; Gaikwad, S.; Wong, K.; Kyzar, E.; Wu, N.; Kalueff, A. V. PLoS One 2011, 6 (3), e17597.
https://doi.org/10.1371/journal.pone.0017597

[47]. Meshalkina, D. A.; Kysil, E. V.; Warnick, J. E.; Demin, K. A.; Kalueff, A. V. Lab Anim. (NY) 2017, 46 (10), 378-387.
https://doi.org/10.1038/laban.1345

[48]. Demin, K. A.; Meshalkina, D. A.; Kysil, E. V.; Antonova, K. A.; Volgin, A. D.; Yakovlev, O. A.; Alekseeva, P. A.; Firuleva, M. M.; Lakstygal, A. M.; de Abreu, M. S.; Barcellos, L. J. G.; Bao, W.; Friend, A. J.; Amstislavskaya, T. G.; Rosemberg, D. B.; Musienko, P. E.; Song, C.; Kalueff, A. V. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2018, 86, 301-312.
https://doi.org/10.1016/j.pnpbp.2018.03.024

[49]. de Abreu, M. S.; Giacomini, A. C. V. V.; Echevarria, D. J.; Kalueff, A. V. Regul. Toxicol. Pharmacol. 2019, 101, 65-70.
https://doi.org/10.1016/j.yrtph.2018.11.007

[50]. Lopez-Luna, J.; Al-Jubouri, Q.; Al-Nuaimy, W.; Sneddon, L. U. J. Exp. Biol. 2017, 220 (8), 1451-1458.
https://doi.org/10.1242/jeb.146969

[51]. Cirelli, C.; Tononi, G. J. Neurosci. 2000, 20 (24), 9187-9194.
https://doi.org/10.1523/JNEUROSCI.20-24-09187.2000

[52]. Darland, T.; Dowling, J. E. Proc. Natl. Acad. Sci. U. S. A. 2001, 98 (20), 11691-11696.
https://doi.org/10.1073/pnas.191380698

[53]. Mann, K. D.; Turnell, E. R.; Atema, J.; Gerlach, G. Biol. Bull. 2003, 205 (2), 224-225.
https://doi.org/10.2307/1543264

[54]. Engeszer, R. E.; Ryan, M. J.; Parichy, D. M. Curr. Biol. 2004, 14 (10), 881-884.
https://doi.org/10.1016/j.cub.2004.04.042

[55]. Norton, W. H. J.; Manceau, L.; Reichmann, F. The Visually Mediated Social Preference Test: A Novel Technique to Measure Social Behavior and Behavioral Disturbances in Zebrafish. In Methods in Molecular Biology; Springer New York: New York, NY, 2019; pp 121-132.
https://doi.org/10.1007/978-1-4939-9554-7_8

[56]. Egan, R. J.; Bergner, C. L.; Hart, P. C.; Cachat, J. M.; Canavello, P. R.; Elegante, M. F.; Elkhayat, S. I.; Bartels, B. K.; Tien, A. K.; Tien, D. H.; Mohnot, S.; Beeson, E.; Glasgow, E.; Amri, H.; Zukowska, Z.; Kalueff, A. V. Behav. Brain Res. 2009, 205 (1), 38-44.
https://doi.org/10.1016/j.bbr.2009.06.022

[57]. Airhart, M. J.; Lee, D. H.; Wilson, T. D.; Miller, B. E.; Miller, M. N.; Skalko, R. G. Neurotoxicol. Teratol. 2007, 29 (6), 652-664.
https://doi.org/10.1016/j.ntt.2007.07.005

[58]. Abreu, M. S. de; Koakoski, G.; Ferreira, D.; Oliveira, T. A.; Rosa, J. G. S. da; Gusso, D.; Giacomini, A. C. V.; Piato, A. L.; Barcellos, L. J. G. PLoS One 2014, 9 (7), e103232.
https://doi.org/10.1371/journal.pone.0103232

[59]. Williams, F. E.; White, D.; Messer, W. S., Jr. Processes 2002, 58 (3), 125-132.
https://doi.org/10.1016/S0376-6357(02)00025-6

[60]. Müller, T. E.; Fontana, B. D.; Bertoncello, K. T.; Franscescon, F.; Mezzomo, N. J.; Canzian, J.; Stefanello, F. V.; Parker, M. O.; Gerlai, R.; Rosemberg, D. B. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2020, 100 (109873), 109873.
https://doi.org/10.1016/j.pnpbp.2020.109873

[61]. Levin, E. D.; Bencan, Z.; Cerutti, D. T. Physiol. Behav. 2007, 90 (1), 54-58.
https://doi.org/10.1016/j.physbeh.2006.08.026

[62]. Gerlai, R.; Lee, V.; Blaser, R. Pharmacol. Biochem. Behav. 2006, 85 (4), 752-761.
https://doi.org/10.1016/j.pbb.2006.11.010

[63]. Boiangiu, R. S.; Mihasan, M.; Gorgan, D. L.; Stache, B. A.; Hritcu, L. Antioxidants (Basel) 2021, 10 (2), 212.
https://doi.org/10.3390/antiox10020212

[64]. Singer, M. L.; Oreschak, K.; Rhinehart, Z.; Robison, B. D. PeerJ 2016, 4 (e2352), e2352.
https://doi.org/10.7717/peerj.2352

[65]. Stewart, A. M.; Braubach, O.; Spitsbergen, J.; Gerlai, R.; Kalueff, A. V. Trends Neurosci. 2014, 37 (5), 264-278.
https://doi.org/10.1016/j.tins.2014.02.011

[66]. Pitchai, A.; Rajaretinam, R. K.; Freeman, J. L. Medicines (Basel) 2019, 6 (2), 61.
https://doi.org/10.3390/medicines6020061

[67]. Dorsey, E. R.; Glidden, A. M.; Holloway, M. R.; Birbeck, G. L.; Schwamm, L. H. Nat. Rev. Neurol. 2018, 14 (5), 285-297.
https://doi.org/10.1038/nrneurol.2018.31

[68]. Pohl, F.; Kong Thoo Lin, P. Molecules 2018, 23 (12), 3283.
https://doi.org/10.3390/molecules23123283

[69]. Blomme, E. A. G.; Will, Y. Res. Toxicol. 2016, 29 (4), 473-504.
https://doi.org/10.1021/acs.chemrestox.5b00407

[70]. Yoganantharjah, P.; Gibert, Y. Curr. Top. Med. Chem. 2017, 17 (18), 2041-2055. https://doi.org/10.2174/1568026617666170130112109.
https://doi.org/10.2174/1568026617666170130112109

[71]. Humphreys, W. G.; Will, Y.; Guengerich, F. P. Chem. Res. Toxicol. 2016, 29 (4), 437-437.
https://doi.org/10.1021/acs.chemrestox.6b00049

[72]. Lee, K. Y.; Jang, G. H.; Byun, C. H.; Jeun, M.; Searson, P. C.; Lee, K. H. Biosci. Rep. 2017, 37 (3), BSR20170199. https://doi.org/10.1042/ bsr20170199.
https://doi.org/10.1042/BSR20170199

[73]. Rico, E. P.; Rosemberg, D. B.; Seibt, K. J.; Capiotti, K. M.; Da Silva, R. S.; Bonan, C. D. Neurotoxicol. Teratol. 2011, 33 (6), 608-617.
https://doi.org/10.1016/j.ntt.2011.07.007

[74]. Burns, C. G.; Milan, D. J.; Grande, E. J.; Rottbauer, W.; MacRae, C. A.; Fishman, M. C. Nat. Chem. Biol. 2005, 1 (5), 263-264.
https://doi.org/10.1038/nchembio732

[75]. de Esch, C.; Slieker, R.; Wolterbeek, A.; Woutersen, R.; de Groot, D. Neurotoxicol. Teratol. 2012, 34 (6), 545-553.
https://doi.org/10.1016/j.ntt.2012.08.006

[76]. Cassar, S.; Dunn, C.; Olson, A.; Buck, W.; Fossey, S.; Ramos, M. F.; Sancheti, P.; Stolarik, D.; Britton, H.; Cole, T.; Bratcher, N.; Huang, X.; Peterson, R.; Longenecker, K.; LeRoy, B. Toxicol. Sci. 2018, 161 (2), 300-309.
https://doi.org/10.1093/toxsci/kfx212

[77]. Fleming, A.; Diekmann, H.; Goldsmith, P. PLoS One 2013, 8 (10), e77548.
https://doi.org/10.1371/journal.pone.0077548

[78]. Watanabe, K.; Nishimura, Y.; Nomoto, T.; Umemoto, N.; Zhang, Z.; Zhang, B.; Kuroyanagi, J.; Shimada, Y.; Shintou, T.; Okano, M.; Miyazaki, T.; Imamura, T.; Tanaka, T. BMC Neurosci. 2012, 13 (1), 101. https://doi.org/10.1186/1471-2202-13-101.
https://doi.org/10.1186/1471-2202-13-101

[79]. Rubinstein, A. L. Expert Opin. Drug Metab. Toxicol. 2006, 2 (2), 231-240.
https://doi.org/10.1517/17425255.2.2.231

[80]. Maes, J.; Verlooy, L.; Buenafe, O. E.; de Witte, P. A. M.; Esguerra, C. V.; Crawford, A. D. PLoS One 2012, 7 (10), e43850.
https://doi.org/10.1371/journal.pone.0043850

[81]. Bailey, J. M.; Oliveri, A. N.; Levin, E. D. Pharmacol. Biochem. Behav. 2015, 139 Pt B, 103-111.
https://doi.org/10.1016/j.pbb.2015.03.006

[82]. d'Amora, M.; Cassano, D.; Pocoví-Martínez, S.; Giordani, S.; Voliani, V. Nanotoxicology 2018, 12 (8), 914-922.
https://doi.org/10.1080/17435390.2018.1498551

[83]. Quevedo, C.; Behl, M.; Ryan, K.; Paules, R. S.; Alday, A.; Muriana, A.; Alzualde, A. Toxicol. Sci. 2019, 168 (1), 225-240.
https://doi.org/10.1093/toxsci/kfy291

[84]. Geraci, C.; Heidel, D.; Sayes, C.; Hodson, L.; Schulte, P.; Eastlake, A.; Brenner, S. J. Nanopart. Res. 2015, 17 (9), 366.
https://doi.org/10.1007/s11051-015-3152-9

[85]. Jeevanandam, J.; Barhoum, A.; Chan, Y. S.; Dufresne, A.; Danquah, M. K. Beilstein J. Nanotechnol. 2018, 9, 1050-1074.
https://doi.org/10.3762/bjnano.9.98

[86]. Gupta, R.; Xie, H. J. Environ. Pathol. Toxicol. Oncol. 2018, 37 (3), 209-230.
https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018026009

[87]. Darweesh, R. S.; Ayoub, N. M.; Nazzal, S. Int. J. Nanomedicine 2019, 14, 7643-7663.
https://doi.org/10.2147/IJN.S223941

[88]. Haque, E.; Ward, A. Nanomaterials (Basel) 2018, 8 (7), 561.
https://doi.org/10.3390/nano8070561

[89]. Duncan, B.; Kim, C.; Rotello, V. M. J. Control. Release 2010, 148 (1), 122-127.
https://doi.org/10.1016/j.jconrel.2010.06.004

[90]. Panzarini, E.; Mariano, S.; Carata, E.; Mura, F.; Rossi, M.; Dini, L. Int. J. Mol. Sci. 2018, 19 (5), 1305.
https://doi.org/10.3390/ijms19051305

[91]. Zhu, M.; Nie, G.; Meng, H.; Xia, T.; Nel, A.; Zhao, Y. Acc. Chem. Res. 2013, 46 (3), 622-631.
https://doi.org/10.1021/ar300031y

[92]. Kim, K.-T.; Zaikova, T.; Hutchison, J. E.; Tanguay, R. L. Toxicol. Sci. 2013, 133 (2), 275-288.
https://doi.org/10.1093/toxsci/kft081

[93]. Ahangari, A.; Salouti, M.; Heidari, Z.; Kazemizadeh, A. R.; Safari, A. A. Drug Deliv. 2013, 20 (1), 34-39.
https://doi.org/10.3109/10717544.2012.746402

[94]. Zhao, Y.; Jiang, X. Nanoscale 2013, 5 (18), 8340.
https://doi.org/10.1039/c3nr01990j

[95]. Javed, I.; Peng, G.; Xing, Y.; Yu, T.; Zhao, M.; Kakinen, A.; Faridi, A.; Parish, C. L.; Ding, F.; Davis, T. P.; Ke, P. C.; Lin, S. Nat. Commun. 2019, 10 (1), 3780. https://doi.org/10.1038/s41467-019-11762-0.
https://doi.org/10.1038/s41467-019-11762-0

[96]. He, Z.; Li, C.; Zhang, X.; Zhong, R.; Wang, H.; Liu, J.; Du, L. Artif. Cells Nanomed. Biotechnol. 2018, 46 (sup2), 720-726.
https://doi.org/10.1080/21691401.2018.1468769

[97]. Johnston, H. J.; Verdon, R.; Gillies, S.; Brown, D. M.; Fernandes, T. F.; Henry, T. B.; Rossi, A. G.; Tran, L.; Tucker, C.; Tyler, C. R.; Stone, V. Crit. Rev. Toxicol. 2018, 48 (3), 252-271.
https://doi.org/10.1080/10408444.2017.1404965

[98]. He, J.-H.; Gao, J.-M.; Huang, C.-J.; Li, C.-Q. Neurotoxicol. Teratol. 2014, 42, 35-42.
https://doi.org/10.1016/j.ntt.2014.01.006


How to cite


Montes, G. Eur. J. Chem. 2021, 12(4), 488-492. doi:10.5155/eurjchem.12.4.488-492.2152
Montes, G. The use of zebrafish to evaluate neuropharmacology of the gold nanoparticles. Eur. J. Chem. 2021, 12(4), 488-492. doi:10.5155/eurjchem.12.4.488-492.2152
Montes, G. (2021). The use of zebrafish to evaluate neuropharmacology of the gold nanoparticles. European Journal of Chemistry, 12(4), 488-492. doi:10.5155/eurjchem.12.4.488-492.2152
Montes, Guilherme. "The use of zebrafish to evaluate neuropharmacology of the gold nanoparticles." European Journal of Chemistry [Online], 12.4 (2021): 488-492. Web. 4 Jul. 2022
Montes, Guilherme. "The use of zebrafish to evaluate neuropharmacology of the gold nanoparticles" European Journal of Chemistry [Online], Volume 12 Number 4 (31 December 2021)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.12.4.488-492.2152

CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2021, 12(4), 488-492 | doi: https://doi.org/10.5155/eurjchem.12.4.488-492.2152 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2022  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2022 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.