European Journal of Chemistry

Investigations on spectroscopic characterizations, molecular docking, NBO, drug-Likeness, and ADME properties of 4H-1,2,4-triazol-4-amine by combined computational approach

Crossmark


Main Article Content

Sibel Celik
Senay Yurdakul

Abstract

In this study, the spectroscopic characterization, frontier molecular orbital analysis, and natural bond orbital analysis (NBO) analysis were executed to determine the movement of electrons within the molecule and the stability, and charge delocalization of the 4H-1,2,4-triazol-4-amine (4-AHT) through density functional theory (DFT) approach and B3LYP/6-311++G(d,p) level of theory. Surface plots of the hybrids’ Molecular Electrostatic Potential (MEP) revealed probable electrophilic and nucleophilic attacking sites. The discussed ligand were observed to be characterized by various spectral studies (FT-IR, UV-Vis). The calculated IR was found to be correlated with experimental values. The UV-Vis data of the molecule was used to analyze the visible absorption maximum (λmax) using the time-dependent DFT method. Since the principle of drug-likeness is usually used in combinatorial chemistry to minimize depletion in pharmacological investigations and growth, drug-likeness and ADME properties were calculated in this research to establish 4-AHT molecule bioavailability. Furthermore, molecular docking studies were carried out. Molecular docking analysis was performed for the title ligand inside the active site of the Epidermal Growth Factor Receptor (EGFR). The title compound’s anti-tumor activity against the cancer cell, in which EGFR is strongly expressed, prompted us to conduct molecular docking into the ATP binding site of EGFR to predict whether this molecule has an analogous binding mode to the EGFR inhibitors (PDB: ID: 1M17).


icon graph This Abstract was viewed 653 times | icon graph Article PDF downloaded 307 times

How to Cite
(1)
Celik, S.; Yurdakul, S. Investigations on Spectroscopic Characterizations, Molecular Docking, NBO, Drug-Likeness, and ADME Properties of 4H-1,2,4-Triazol-4-Amine by Combined Computational Approach. Eur. J. Chem. 2021, 12, 401-411.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Haasnoot, J. G. Coord. Chem. Rev. 2000, 200-202, 131-185.
https://doi.org/10.1016/S0010-8545(00)00266-6

[2]. Zhang, J.-P.; Zhang, Y.-B.; Lin, J.-B.; Chen, X.-M. Chem. Rev. 2012, 112 (2), 1001-1033.
https://doi.org/10.1021/cr200139g

[3]. Naik, A. D.; Dîrtu, M. M.; Railliet, A. P.; Marchand-Brynaert, J.; Garcia, Y. Polymers (Basel) 2011, 3 (4), 1750-1775.
https://doi.org/10.3390/polym3041750

[4]. El-Sherief, H. A.; Abuo-Rahma, G. E.-D. A.; Shoman, M. E.; Beshr, E. A.; Abdel-baky, R. M. Med. Chem. Res. 2017, 26 (12), 3077-3090.
https://doi.org/10.1007/s00044-017-2004-9

[5]. El Shehry, M. F.; Abu-Hashem, A. A.; El-Telbani, E. M. Eur. J. Med. Chem. 2010, 45 (5), 1906-1911.
https://doi.org/10.1016/j.ejmech.2010.01.030

[6]. Mathew, V.; Keshavayya, J.; Vaidya, V. P.; Giles, D. Eur. J. Med. Chem. 2007, 42 (6), 823-840.
https://doi.org/10.1016/j.ejmech.2006.12.010

[7]. Holla, B. S.; Poojary, K. N.; Rao, B. S.; Shivananda, M. K. Eur. J. Med. Chem. 2002, 37 (6), 511-517.
https://doi.org/10.1016/S0223-5234(02)01358-2

[8]. Padmavathi, V.; Sudhakar Reddy, G.; Padmaja, A.; Kondaiah, P.; Ali-Shazia. Eur. J. Med. Chem. 2009, 44 (5), 2106-2112.
https://doi.org/10.1016/j.ejmech.2008.10.012

[9]. Liu, X.-H.; Pan, L.; Tan, C.-X.; Weng, J.-Q.; Wang, B.-L.; Li, Z.-M. Pestic. Biochem. Physiol. 2011, 101 (3), 143-147.
https://doi.org/10.1016/j.pestbp.2011.08.006

[10]. Ohno, N.; Fujimoto, K.; Okuno, Y.; Mizutani, T.; Hirano, M.; Itaya, N.; Honda, T.; Yoshioka, H. Agric. Biol. Chem. 1974, 38 (4), 881-883.
https://doi.org/10.1080/00021369.1974.10861252

[11]. Liu, X. H.; Weng, J. Q.; Tan, C. X.; Pan, L.; Wang, B. L; Li, Z. M, Asian J. Chem. 2011, 23, 4031-4036.

[12]. Xue, Y. L; Zhang, Y. G; Liu, X. H. Asian J. Chem. 2012, 24, 5087-5089.

[13]. Bräunlich, I.; Medvedev, M.; Dshemuchadse, J.; Wörle, M.; Caseri, W. Z. Anorg. Allg. Chem. 2015, 641 (12-13), 2344-2349.
https://doi.org/10.1002/zaac.201500234

[14]. Dîrtu, M. M.; Boland, Y.; Gillard, D.; Tinant, B.; Robeyns, K.; Safin, D. A.; Devlin, E.; Sanakis, Y.; Garcia, Y. Int. J. Mol. Sci. 2013, 14 (12), 23597-23613.
https://doi.org/10.3390/ijms141223597

[15]. Kavlakova, M.; Bakalova, A.; Momekov, G.; Ivanov, D. J. Coord. Chem. 2010, 63 (20), 3531-3540.
https://doi.org/10.1080/00958972.2010.516432

[16]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 09, Inc., Wallingford CT, 2009.

[17]. GaussView, Version 5, Dennington, R.; Keith, T. A.; Millam, J. M. Semichem Inc., Shawnee Mission, KS, 2009

[18]. O'Boyle, N. M.; Tenderholt, A. L.; Langner, K. M. J. Comput. Chem. 2008, 29 (5), 839-845.
https://doi.org/10.1002/jcc.20823

[19]. Amat, A.; Clementi, C.; De Angelis, F.; Sgamellotti, A.; Fantacci, S. J. Phys. Chem. A 2009, 113 (52), 15118-15126.
https://doi.org/10.1021/jp9052538

[20]. PQS Version 3.1, Parallel Quantum Solutions, 2013 Green Acres Road, Fayetteville, Arkansas, AR72703, USA.

[21]. Yurdakul, Ş.; Tanrıbuyurdu, S. J. Mol. Struct. 2013, 1052, 57-66.
https://doi.org/10.1016/j.molstruc.2013.08.046

[22]. Molinspiration Cheminformatics free web services,

https://www.molinspiration.com, Slovensky Grob, Slovakia (accessed Sep 10, 2021).

[23]. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Adv. Drug Deliv. Rev. 2012, 64 (SUPPL.), 4-17.
https://doi.org/10.1016/j.addr.2012.09.019

[24]. Bioinformatics and Molecular Design Research Center, Seul, South Corea, PreADMET program, 2004. Available from: URL: http://preadmet.bmdrc.org (accessed Sep 10, 2021).

[25]. Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. J. Comput. Chem. 1998, 19 (14), 1639-1662.
https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B

[26]. BIOVIA, Dassault Systèmes, Discovery Studio Visualizer, v17.2.0.16349, San Diego: Dassault Systèmes, 2016.

[27]. De Lano, W. L.; Carlos, D. L. S.; California, U. S. A. PyMOL: An open-source molecular graphics tool

http://legacy.ccp4.ac.uk/newsletters/newsletter40/11_pymol.pdf (accessed Sep 14, 2021).

[28]. Said, M.; Boughzala, H. Acta Crystallogr. E Crystallogr. Commun. 2018, 74 (Pt 2), 147-150.
https://doi.org/10.1107/S2056989018000464

[29]. Singh, H.; Singh, A.; Khurana, J. M. J. Mol. Struct. 2017, 1147, 725-734.
https://doi.org/10.1016/j.molstruc.2017.07.010

[30]. Joshi, R.; Pandey, N.; Yadav, S. K.; Tilak, R.; Mishra, H.; Pokharia, S. J. Mol. Struct. 2018, 1164, 386-403.
https://doi.org/10.1016/j.molstruc.2018.03.081

[31]. Drozd, M. J. Mol. Struct. 2018, 1155, 776-788.
https://doi.org/10.1016/j.molstruc.2017.11.060

[32]. Bytheway, I.; Wong, M. W. Chem. Phys. Lett. 1998, 282 (3-4), 219-226.
https://doi.org/10.1016/S0009-2614(97)01281-5

[33]. Koleva, B. B.; Kolev, T.; Seidel, R. W.; Spiteller, M.; Mayer-Figge, H.; Sheldrick, W. S. J. Phys. Chem. A 2009, 113 (13), 3088-3095.
https://doi.org/10.1021/jp8106233

[34]. Kolev, T.; Koleva, B. B.; Seidel, R. W.; Spiteller, M.; Sheldrick, W. S. Cryst. Growth Des. 2009, 9 (8), 3348-3352.
https://doi.org/10.1021/cg900188k

[35]. Ivanova, B. B.; Mayer-Figge, H. J. Coord. Chem. 2005, 58 (8), 653-659.
https://doi.org/10.1080/00958970412331336295

[36]. Koleva, B. B.; Trendafilova, E. N.; Arnaudov, M. G.; Sheldrick, W. S.; Mayer-Figge, H. Transit. Met. Chem. 2006, 31 (7), 866-873.
https://doi.org/10.1007/s11243-006-0078-1

[37]. Tankov, I.; Yankova, R. J. Mol. Struct. 2019, 1179, 581-592.
https://doi.org/10.1016/j.molstruc.2018.11.050

[38]. Tamer, Ö.; Bhatti, M. H.; Yunus, U.; Nadeem, M.; Avcı, D.; Atalay, Y.; Yaqub, A.; Quershi, R. J. Mol. Struct. 2017, 1133, 329-337.
https://doi.org/10.1016/j.molstruc.2016.12.017

[39]. Chai, J.-D.; Head-Gordon, M. J. Chem. Phys. 2008, 128 (8), 084106.
https://doi.org/10.1063/1.2834918

[40]. Khajehzadeh, M.; Moghadam, M. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 180, 51-66.

[41]. Amul, B.; Muthu, S.; Raja, M.; Sevvanthi, S. J. Mol. Struct. 2019, 1195, 747-761.
https://doi.org/10.1016/j.molstruc.2019.06.047

[42]. Ramesh, P.; Lydia Caroline, M.; Muthu, S.; Narayana, B.; Raja, M.; Aayisha, S. J. Mol. Struct. 2020, 1200 (127123), 127123.
https://doi.org/10.1016/j.molstruc.2019.127123

[43]. Srivastava, A. K.; Kumar, A.; Misra, N.; Manjula, P. S.; Sarojini, B. K.; Narayana, B. J. Mol. Struct. 2016, 1107, 137-144.
https://doi.org/10.1016/j.molstruc.2015.11.042

[44]. Alyar, S.; Şen, T.; Özmen, Ü. Ö.; Alyar, H.; Adem, Ş.; Şen, C. J. Mol. Struct. 2019, 1185, 416-424.
https://doi.org/10.1016/j.molstruc.2019.03.002

[45]. Mondal, S.; Mandal, S. M.; Mondal, T. K.; Sinha, C. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 150, 268-279.
https://doi.org/10.1016/j.saa.2015.05.049

[46]. Banuppriya, G.; Sribalan, R.; Padmini, V. J. Mol. Struct. 2018, 1155, 90-100.
https://doi.org/10.1016/j.molstruc.2017.10.097

[47]. Pangh, A.; Behzadi, H.; Ghaemi, M.; Sadani, S. Comput. Theor. Chem. 2019, 1155, 47-55.
https://doi.org/10.1016/j.comptc.2019.03.024

[48]. Sivaprakash, S.; Prakash, S.; Mohan, S.; Jose, S. P. Heliyon 2019, 5 (7), e02149.
https://doi.org/10.1016/j.heliyon.2019.e02149

[49]. Barim, E.; Akman, F. J. Mol. Struct. 2019, 1195, 506-513.
https://doi.org/10.1016/j.molstruc.2019.06.015

[50]. Santhy, K. R.; Sweetlin, M. D.; Muthu, S.; Kuruvilla, T. K.; Abraham, C. S. J. Mol. Struct. 2019, 1177, 401-417.
https://doi.org/10.1016/j.molstruc.2018.09.058

[51]. Celik, S.; Alp, M.; Yurdakul, S. Spectrosc. Lett. 2020, 53 (4), 234-248.
https://doi.org/10.1080/00387010.2020.1734840

[52]. Zhang, Y.; Zhang, X.; Qiao, L.; Ding, Z.; Hang, X.; Qin, B.; Song, J.; Huang, J. J. Mol. Struct. 2019, 1176, 335-345.
https://doi.org/10.1016/j.molstruc.2018.08.069

[53]. Lipinski, C. A. Drug Discov. Today Technol. 2004, 1 (4), 337-341.
https://doi.org/10.1016/j.ddtec.2004.11.007

[54]. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Adv. Drug Deliv. Rev. 1997, 23 (1-3), 3-25.
https://doi.org/10.1016/S0169-409X(96)00423-1

[55]. Aayisha, S.; Renuga Devi, T. S.; Janani, S.; Muthu, S.; Raja, M.; Sevvanthi, S. J. Mol. Struct. 2019, 1186, 468-481.
https://doi.org/10.1016/j.molstruc.2019.03.056

[56]. Belkhir-Talbi, D.; Makhloufi-Chebli, M.; Terrachet-Bouaziz, S.; Hikem-Oukacha, D.; Ghemmit, N.; Ismaili, L.; M.S Silva, A.; Hamdi, M. J. Mol. Struct. 2019, 1179, 495-505.
https://doi.org/10.1016/j.molstruc.2018.11.035

[57]. El-Sherief, H. A. M.; Youssif, B. G. M.; Bukhari, S. N. A.; Abdel-Aziz, M.; Abdel-Rahman, H. M. Bioorg. Chem. 2018, 76, 314-325.
https://doi.org/10.1016/j.bioorg.2017.12.013

[58]. Stamos, J.; Sliwkowski, M. X.; Eigenbrot, C. J. Biol. Chem. 2002, 277 (48), 46265-46272.
https://doi.org/10.1074/jbc.M207135200

[59]. Abdelazeem, A. H.; El-Saadi, M. T.; Said, E. G.; Youssif, B. G. M.; Omar, H. A.; El-Moghazy, S. M. Bioorg. Chem. 2017, 75, 127-138.
https://doi.org/10.1016/j.bioorg.2017.09.009

[60]. Sangeetha Margreat, S.; Ramalingam, S.; Sebastian, S.; Xavier, S.; Periandy, S.; Daniel, J. C.; Maria Julie, M. J. Mol. Struct. 2020, 1200 (127099), 127099.
https://doi.org/10.1016/j.molstruc.2019.127099

Supporting Agencies

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).