European Journal of Chemistry

Molecular dynamics of fibric acids

Crossmark


Main Article Content

Chad Miller
Steven Schildcrout
Howard Mettee
Ganesaratnam Balendiran

Abstract

1H- and 13C-NMR chemical shifts were measured for four fibric acids (bezafibrate, clofibric acid, fenofibric acid, and gemfibrozil), which are lipid-lowering drugs. Correlation is found with DFT-computed chemical shifts from the conformational analysis. Equilibrium populations of optimized conformers at 298 K are very different when based on computed Gibbs energies rather than on potential energies. This is due to the significant entropic advantages of extended rather than bent conformational shapes. Abundant conformers with intramolecular hydrogen bonding via five-member rings are computed for three fibric acids, but not gemfibrozil, which lacks suitable connectivity of carboxyl and phenoxy groups. Trends in computed atom-positional deviations, molecular volumes, surface areas, and dipole moments among the fibric acids and their constituent conformations indicate that bezafibrate has the greatest hydrophilicity and fenofibric acid has the greatest flexibility. Theoretical and experimental comparison of chemical shifts of standards with sufficient overlap of fragments containing common atoms, groups, and connectivity may provide a reliable minimal set to benchmark and generate leads.


icon graph This Abstract was viewed 412 times | icon graph Article PDF downloaded 161 times

How to Cite
(1)
Miller, C.; Schildcrout, S.; Mettee, H.; Balendiran, G. Molecular Dynamics of Fibric Acids. Eur. J. Chem. 2022, 13, 186-195.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Gund, P.; Andose, J. D.; Rhodes, J. B.; Smith, G. M. Three-dimensional molecular modeling and drug design. Science 1980, 208, 1425-1431.
https://doi.org/10.1126/science.6104357

[2]. Sicho, M.; Liu, X.; Svozil, D.; van Westen, G. J. P. GenUI: interactive and extensible open source software platform for de novo molecular generation and cheminformatics. J. Cheminform. 2021, 13, 1758-2946.
https://doi.org/10.1186/s13321-021-00550-y

[3]. Balendiran, G. K.; Balakrishnan, R. In search of aldose reductase inhibitors; Vol. 12, p 276-283, ISBN 9781557533845. Purdue University Press: West Lafayette, IN, 2004. http://www.thepress.purdue.edu/titles/format/9781557533845 (accessed April 10, 2022)

[4]. Balendiran, G. K.; Balakrishnan, R. Fibrates inhibit aldose reductase activity in the forward and reverse reactions. Biochem. Pharmacol. 2005, 70, 1653-1663.
https://doi.org/10.1016/j.bcp.2005.06.029

[5]. Klemin, S.; Calvo, R. Y.; Bond, S.; Dingess, H.; Rajkumar, B.; Perez, R.; Chow, L.; Balendiran, G. K. WY 14,643 inhibits human aldose reductase activity. J. Enzyme Inhib. Med. Chem. 2006, 21, 569-573.
https://doi.org/10.1080/14756360600720887

[6]. Balendiran, G.; Verma, M.; Perry, E. Chemistory of fibrates. Curr. Chem. Biol. 2007, 1, 311-316.
https://doi.org/10.2174/2212796810701030311

[7]. Balendiran, G. K.; Verma, M.; Bharadwaj, S. Lead Optimization in the Design of Aldose Reductase Inhibitors; Vol. 13, p 228-237, ISBN 978-1-55753-447-7. Purdue University Press: West Lafayette, IN, 2007. http://www.thepress.purdue.edu/titles/format/9781557534477 (accessed April 10, 2022)

[8]. Verma, M.; Martin, H.-J.; Haq, W.; O'Connor, T. R.; Maser, E.; Balendiran, G. K. Inhibiting wild-type and C299S mutant AKR1B10; a homologue of aldose reductase upregulated in cancers. Eur. J. Pharmacol. 2008, 584, 213-221.
https://doi.org/10.1016/j.ejphar.2008.01.036

[9]. Kong, J.; White, C. A.; Krylov, A. I.; Sherrill, D.; Adamson, R. D.; Furlani, T. R.; Lee, M. S.; Lee, A. M.; Gwaltney, S. R.; Adams, T. R.; Ochsenfeld, C.; Gilbert, A. T. B.; Kedziora, G. S.; Rassolov, V. A.; Maurice, D. R.; Nair, N.; Shao, Y.; Besley, N. A.; Maslen, P. E.; Dombroski, J. P.; Daschel, H.; Zhang, W.; Korambath, P. P.; Baker, J.; Byrd, E. F. C.; Van Voorhis, T.; Oumi, M.; Hirata, S.; Hsu, C.-P.; Ishikawa, N.; Florian, J.; Warshel, A.; Johnson, B. G.; Gill, P. M. W.; Head-Gordon, M.; Pople, J. A. Q-Chem 2.0: a high-performanceab initio electronic structure program package. J. Comput. Chem. 2000, 21, 1532-1548.
https://doi.org/10.1002/1096-987X(200012)21:16<1532::AID-JCC10>3.0.CO;2-W

[10]. Spartan'20, version 1.0.0, Wavefunction, Inc., Irvine, CA, 2021. https://wavefun.com (accessed April 10, 2022).

[11]. Djinović, K.; Globokar, M.; Zupet, P. Structure of bezafibrate (2-p-[2-(p-chlorobenzamide)ethyl]phenoxy-2-methylpropanoic acid). Acta Crystallogr. C 1989, 45, 772-775.
https://doi.org/10.1107/S0108270188013459

[12]. Rath, N. P.; Haq, W.; Balendiran, G. K. Fenofibric acid. Acta Crystallogr. C 2005, 61, o81-4.
https://doi.org/10.1107/S0108270104032573

[13]. Bruni, B.; Coran, S.; Di Vaira, M.; Giannellini, V. 5-(2,5-Dimethylphenoxy)-2,2-dimethylpentanoic acid (gemfibrozil). Acta Crystallogr. Sect. E Struct. Rep. Online 2005, 61, o1989-o1991.
https://doi.org/10.1107/S1600536805016855

[14]. Balendiran, G. K.; Rath, N.; Kotheimer, A.; Miller, C.; Zeller, M.; Rath, N. P. Biomolecular chemistry of isopropyl fibrates. J. Pharm. Sci. 2012, 101, 1555-1569.
https://doi.org/10.1002/jps.23040

[15]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A. J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision C.01, Gaussian, Inc.: Wallingford CT, 2019.

[16]. Ohio Supercomputer Center. 1987. Columbus OH: Ohio Supercomputer Center. http://osc.edu/ark:/19495/f5s1ph73 (accessed April 10, 2022).

[17]. Stringfellow, T. C.; C. Farrar, T. NMR chemical shift temperature dependence of isocyanomethane. Spectrochim. Acta A Mol. Biomol. Spectrosc. 1997, 53, 2425-2433.
https://doi.org/10.1016/S1386-1425(97)00153-4

[18]. Wendt, M. A.; Meiler, J.; Weinhold, F.; Farrar, T. C. Solvent and concentration dependence of the hydroxyl chemical shift of methanol. Mol. Phys. 1998, 93, 145-151.
https://doi.org/10.1080/00268979809482198

[19]. Lee, B.; Richards, F. M. The interpretation of protein structures: Estimation of static accessibility. J. Mol. Biol. 1971, 55, 379-400.
https://doi.org/10.1016/0022-2836(71)90324-X

[20]. Richards, F. M. Areas, volumes, packing and protein structure. Annu. Rev. Biophys. Bioeng. 1977, 6, 151-176.
https://doi.org/10.1146/annurev.bb.06.060177.001055

[21]. Connolly, M. L. Analytical molecular surface calculation. J. Appl. Crystallogr. 1983, 16, 548-558.
https://doi.org/10.1107/S0021889883010985

[22]. Krarup, L. H.; Christensen, I. T.; Hovgaard, L.; Frokjaer, S. Predicting drug absorption from molecular surface properties based on molecular dynamics simulations. Pharm. Res. 1998, 15, 972-978.
https://doi.org/10.1023/A:1011905522110

[23]. Clark, D. E. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 1. Prediction of intestinal absorption. J. Pharm. Sci. 1999, 88, 807-814.
https://doi.org/10.1021/js9804011

[24]. TopSpin; Bruker Topspin software package, (RRID:SCR_014227), https://www.bruker.com/products/mr/nmr/nmr-software/software/topspin/overview.html (accessed April 10, 2022).

[25]. Lim, V. T.; Bayly, C. I.; Fusti-Molnar, L.; Mobley, D. L. Assessing the conformational equilibrium of carboxylic acid via quantum mechanical and molecular dynamics studies on acetic acid. J. Chem. Inf. Model. 2019, 59, 1957-1964.
https://doi.org/10.1021/acs.jcim.8b00835

[26]. Hoff, A.; Rath, N.; Lisko, J.; Zeller, M.; Balendiran, G. K. Signature of Glycylglutamic Acid structure. Int J Biochem Biophys (Alhambra) 2021, 9, 8-15.
https://doi.org/10.13189/ijbb.2021.090102

[27]. Bryant, R. G. NMR relaxation studies of solute-solvent interactions. Annu. Rev. Phys. Chem. 1978, 29, 167-188.
https://doi.org/10.1146/annurev.pc.29.100178.001123

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).