

Crystal structure, in silico molecular docking, DFT analysis and ADMET studies of N-(2-methoxy-benzyl)-acetamide
Suganya Murugan (1)











(1) Department of Chemistry, Faculty of Science, Mother Teresa Women’s University, Kodaikanal, 624101, India
(2) Centre of Advanced Study in Crystallography and Biophysics, Faculty of Science, University of Madras, Chennai, 600025, India
(3) Department of Chemistry, Faculty of Science, Mother Teresa Women’s University, Kodaikanal, 624101, India
(4) Department of Chemistry, Faculty of Science, Mother Teresa Women’s University, Kodaikanal, 624101, India
(5) Department of Physics, Faculty of Science, Ondokuz Mayis University, Samsun, 55200, Turkey
(6) Department of Physics, Faculty of Science, Ondokuz Mayis University, Samsun, 55200, Turkey
(7) Department of Chemistry, Faculty of Science, Mother Teresa Women’s University, Kodaikanal, 624101, India
(8) Department of Chemistry, Faculty of Science, Government Arts College (Autonomous), Thanthonrimalai, Karur, 639005, India
(9) Department of Chemistry, Faculty of Science, Government Arts College, Trichy, 620022, India
(10) Centre of Advanced Study in Crystallography and Biophysics, Faculty of Science, University of Madras, Chennai, 600025, India
(11) Department of Chemistry, Faculty of Science, Mother Teresa Women’s University, Kodaikanal, 624101, India
(*) Corresponding Author
Received: 08 Jul 2022 | Revised: 01 Sep 2022 | Accepted: 09 Sep 2022 | Published: 31 Dec 2022 | Issue Date: December 2022
Abstract
In this work, N-(2-methoxy-benzyl)-acetamide (2MBA) was synthesized from an amide derivative and it was characterized by FT-IR and NMR spectroscopy techniques. The crystal structure of 2MBA was also validated via single-crystal X-ray diffraction analysis. Crystal data for C10H13NO2 for 2MBA: Monoclinic, space group P21/n (no. 14), a = 9.1264(6) Å, b = 9.3375(7) Å, c = 11.9385(8) Å, β = 95.745(5)°, V = 1012.26(12) Å3, Z = 4, μ(MoKα) = 0.082 mm-1, Dcalc = 1.176 g/cm3, 5632 reflections measured (5.368° ≤ 2Θ ≤ 51.992°), 1990 unique (Rint = 0.0377, Rsigma = 0.0314) which were used in all calculations. The final R1 was 0.0583 (I > 2σ(I)) and wR2 was 0.1444 (all data). The intermolecular interactions in 2MBA were theoretically examined by Hirshfeld surface analysis and 2D fingerprint plots. Moreover, the HOMO and LUMO energy gaps of 2MBA was calculated by DFT calculation with the B3LYP/6-311G++(d,p) method. The electron-withdrawing and donating sites of the 2MBA were confirmed via molecular electrostatic potential surface analysis. The present study discusses the title compound not only highlighted the crystallographic data but also revealed good molecular interactions together with an anticancer drug target, which is a targeting PARP protein, which was an important drug target in the treatment of breast cancer.
Announcements
Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.
1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization or a DFT study between September 15, 2023 and October 31, 2023 (Voucher code: FALL2023).
2. A 50% discount will be applied to the article processing fee for submissions made between September 15, 2023 and October 31, 2023 by authors who have at least one publication in the European Journal of Chemistry (Voucher code: AUTHOR-3-2023).
3. Young writers will not be charged for the article processing fee between September 15, 2023 and October 31, 2023 (Voucher code: YOUNG2023).
Editor-in-Chief
European Journal of Chemistry
Keywords
Full Text:
PDF

DOI: 10.5155/eurjchem.13.4.440-450.2303
Links for Article
| | | | | | |
| | | | | | |
| | | |
Related Articles
Article Metrics


Funding information
The Science and Engineering Research Board Science, International Research Experience (SERB-IRE) (SIR/2022/000011) and Mother Teresa Women’s University, Tamil Nadu, India.
Citations
[1]. Hitler Louis, Ernest C. Agwamba, Udochukwu G. Chukwu, Goodness J. Ogunwale, Thomas O. Magu, Adedapo S. Adeyinka
Modeling of the structural, optoelectronic, thermodynamic, dynamical stability, and the hydrogen storage density of CsSnX3 (X = O, S, Se and Te) perovskites
Chemistry of Inorganic Materials 1, 100007, 2023
DOI: 10.1016/j.cinorg.2023.100007

[2]. Nur Iffah Fitri Idelfitri, Nur Nadia Dzulkifli, Nur Ain Nabilah Ash'ari, Suhaila Sapari, Fazira Ilyana Abdul Razak, Noor Hidayah Pungot
Synthesis, characterisation and corrosion inhibitory study of Meldrum’s acid Thiosemicarbazone: Weight Loss, SEM-EDX and DFT
Inorganic Chemistry Communications 150, 110485, 2023
DOI: 10.1016/j.inoche.2023.110485

References
[1]. Humphrey, J. M.; Chamberlin, A. R. Chemical synthesis of natural product peptides: Coupling methods for the incorporation of noncoded amino acids into peptides. Chem. Rev. 1997, 97, 2243-2266.
https://doi.org/10.1021/cr950005s
[2]. Ghose, A. K.; Viswanadhan, V. N.; Wendoloski, J. J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem. 1999, 1, 55-68.
https://doi.org/10.1021/cc9800071
[3]. Walsh, G. Pharmaceutical Biotechnology: Concepts and Applications; 1st ed.; John Wiley & Sons: Nashville, TN, 2013.
[4]. Khalid, H.; Aziz-ur-Rehman; Abbasi, M. A.; Malik, A.; Rasool, S.; Nafeesa, K.; Ahmad, I.; Afzal, S. Synthesis, spectral analysis and anti-bacterial study of N -substituted derivatives of 2-(5-(1-(phenylsulfonyl) piperidin-4-yl)-1,3,4-oxadiazol-2-ylthio)acetamide. J. Saudi Chem. Soc. 2016, 20, S615-S623.
https://doi.org/10.1016/j.jscs.2013.05.001
[5]. Autore, G.; Caruso, A.; Marzocco, S.; Nicolaus, B.; Palladino, C.; Pinto, A.; Popolo, A.; Sinicropi, M. S.; Tommonaro, G.; Saturnino, C. Acetamide derivatives with antioxidant activity and potential anti-inflammatory activity. Molecules 2010, 15, 2028-2038.
https://doi.org/10.3390/molecules15032028
[6]. Hazra, B.; Pore, V.; Dey, S.; Datta, S.; Darokar, M.; Saikia, D.; Khanuja, S. P. S.; Thakur, A. Bile acid amides derived from chiral amino alcohols: novel antimicrobials and antifungals. Bioorg. Med. Chem. Lett. 2004, 14, 773-777.
https://doi.org/10.1016/j.bmcl.2003.11.018
[7]. Sawant, R.; Kawade, D. Synthesis and biological evaluation of some novel 2-phenyl benzimidazole-1-acetamide derivatives as potential anthelmintic agents. Acta Pharm. 2011, 61, 353-361.
https://doi.org/10.2478/v10007-011-0029-z
[8]. Hu, J.; Yu, M.; Yu, P.; Xu, Y. Synthesis and antimicrobial activity of novel benzisothiazolin-3-one acetamide derivatives. Asian J. Chem. 2014, 26, 7680-7682.
https://doi.org/10.14233/ajchem.2014.17594
[9]. Shridhar Deshpande, N.; Mahendra, G. S.; Aggarwal, N. N.; Gatphoh, B. F. D.; Revanasiddappa, B. C. Insilico design, ADMET screening, MM-GBSA binding free energy of novel 1,3,4 oxadiazoles linked Schiff bases as PARP-1 inhibitors targeting breast cancer. Futur. J. Pharm. Sci. 2021, 7, 174.
https://doi.org/10.1186/s43094-021-00321-4
[10]. Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717.
https://doi.org/10.1038/srep42717
[11]. Filimonov, D. A.; Lagunin, A. A.; Gloriozova, T. A.; Rudik, A. V.; Druzhilovskii, D. S.; Pogodin, P. V.; Poroikov, V. V. Prediction of the biological activity spectra of organic compounds using the pass online web resource. Chem. Heterocycl. Compd. (N. Y.) 2014, 50, 444-457.
https://doi.org/10.1007/s10593-014-1496-1
[12]. Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785-2791.
https://doi.org/10.1002/jcc.21256
[13]. Karlberg, T.; Markova, N.; Johansson, I.; Hammarström, M.; Schütz, P.; Weigelt, J.; Schüler, H. Structural basis for the interaction between tankyrase-2 and a potent Wnt-signaling inhibitor. J. Med. Chem. 2010, 53, 5352-5355.
https://doi.org/10.1021/jm100249w
[14]. Ryan, K.; Bolaňos, B.; Smith, M.; Palde, P. B.; Cuenca, P. D.; VanArsdale, T. L.; Niessen, S.; Zhang, L.; Behenna, D.; Ornelas, M. A.; Tran, K. T.; Kaiser, S.; Lum, L.; Stewart, A.; Gajiwala, K. S. Dissecting the molecular determinants of clinical PARP1 inhibitor selectivity for tankyrase1. J. Biol. Chem. 2021, 296, 100251.
https://doi.org/10.1074/jbc.RA120.016573
[15]. Yang, X.; Sun, R.; Zhang, C.; Zheng, X.; Yuan, M.; Fu, H.; Li, R.; Chen, H. Iridium-catalyzed benzylamine C-H alkenylation enabled by pentafluorobenzoyl as the directing group. Org. Lett. 2019, 21, 1002-1006.
https://doi.org/10.1021/acs.orglett.8b04005
[16]. Mumtaz, A.; Mahmud, T.; Mr, E. Synthesis and characterization of new Schiff base transition metal complexes derived from drug together with biological potential study. J. Nucl. Med. Radiat. Ther. 2016, 07, 6.
https://doi.org/10.4172/2155-9619.1000310
[17]. Narasimharao, K.; Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia Design, spectroscopic characterization, electrical conductivity and molecular modelling studies of biologically puissant Co(II) and Ni(II) complexes of N,N'-bis(furan-2-ylmethyl)benzene-1,2- dicarboxamide. Int. J. Electrochem. Sci. 2016, 7282-7307.
https://doi.org/10.20964/2016.08.43
[18]. Bruker (2015). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
[19]. Bruker (2008). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
[20]. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112-122.
https://doi.org/10.1107/S0108767307043930
[21]. Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. D Biol. Crystallogr. 2009, 65, 148-155.
https://doi.org/10.1107/S090744490804362X
[22]. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339-341.
https://doi.org/10.1107/S0021889808042726
[23]. Farrugia, L. J. ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI). J. Appl. Crystallogr. 1997, 30, 565-565.
https://doi.org/10.1107/S0021889897003117
[24]. Spackman, P. R.; Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006-1011.
https://doi.org/10.1107/S1600576721002910
[25]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 09, rev. A.01, Gaussian, Inc., Wallingford CT, 2013.
[26]. Bhabha, G.; Ekiert, D. C.; Jennewein, M.; Zmasek, C. M.; Tuttle, L. M.; Kroon, G.; Dyson, H. J.; Godzik, A.; Wilson, I. A.; Wright, P. E. Divergent evolution of protein conformational dynamics in dihydrofolate reductase. Nat. Struct. Mol. Biol. 2013, 20, 1243-1249.
https://doi.org/10.1038/nsmb.2676
[27]. Blanco, B.; Prado, V.; Lence, E.; Otero, J. M.; Garcia-Doval, C.; van Raaij, M. J.; Llamas-Saiz, A. L.; Lamb, H.; Hawkins, A. R.; González-Bello, C. Mycobacterium tuberculosis shikimate kinase inhibitors: Design and simulation studies of the catalytic turnover. J. Am. Chem. Soc. 2013, 135, 12366-12376.
https://doi.org/10.1021/ja405853p
[28]. Ritchie, T. J.; Ertl, P.; Lewis, R. The graphical representation of ADME-related molecule properties for medicinal chemists. Drug Discov. Today 2011, 16, 65-72.
https://doi.org/10.1016/j.drudis.2010.11.002
[29]. Dunnett, C. W. New tables for multiple comparisons with a control. Biometrics 1964, 20, 482-491.
https://doi.org/10.2307/2528490
[30]. Tung, N.; Garber, J. E. PARP inhibition in breast cancer: progress made and future hopes. NPJ Breast Cancer 2022, 8, 47.
https://doi.org/10.1038/s41523-022-00411-3
[31]. Qiu, W.; Lam, R.; Voytyuk, O.; Romanov, V.; Gordon, R.; Gebremeskel, S.; Vodsedalek, J.; Thompson, C.; Beletskaya, I.; Battaile, K. P.; Pai, E. F.; Rottapel, R.; Chirgadze, N. Y. Insights into the binding of PARP inhibitors to the catalytic domain of human tankyrase-2. Acta Crystallogr. D Biol. Crystallogr. 2014, 70, 2740-2753.
https://doi.org/10.1107/S1399004714017660
[32]. DeLano, W. L. The PyMOL Molecular Graphics System DeLano Scientific: San Carlos, CA, 2002. https://www.pymol.org (accessed August 10, 2022).
[33]. Wallace, A. C.; Laskowski, R. A.; Thornton, J. M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. Des. Sel. 1995, 8, 127-134.
https://doi.org/10.1093/protein/8.2.127
[34]. Schöning-Stierand, K.; Diedrich, K.; Fährrolfes, R.; Flachsenberg, F.; Meyder, A.; Nittinger, E.; Steinegger, R.; Rarey, M. ProteinsPlus: interactive analysis of protein-ligand binding interfaces. Nucleic Acids Res. 2020, 48, W48-W53.
https://doi.org/10.1093/nar/gkaa235
[35]. Stierand, K.; Maass, P. C.; Rarey, M. Molecular complexes at a glance: automated generation of two-dimensional complex diagrams. Bioinformatics 2006, 22, 1710-1716.
https://doi.org/10.1093/bioinformatics/btl150
[36]. Kansiz, S.; Çakmak, S.; Dege, N.; Meral, G.; Kütük, H. Crystal Structure of 3-Acetoxy-2-methyl-N-(4-nitrophenyl)benzamide. X-ray Struct. Anal. Online 2018, 34, 17-18.
https://doi.org/10.2116/xraystruct.34.17
[37]. Mackenzie, C. F.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ 2017, 4, 575-587.
https://doi.org/10.1107/S205225251700848X
[38]. Abbaz, T.; Bendjeddou, A.; Villemin, D. Molecular structure, HOMO, LUMO, MEP, natural bond orbital analysis of benzo and anthra quinodimethane derivatives. Pharm. Biol. Evaluations 2018, 5, 27-39.
https://doi.org/10.26510/2394-0859.pbe.2018.04
[39]. Uzun, S.; Esen, Z.; Koç, E.; Usta, N. C.; Ceylan, M. Experimental and density functional theory (MEP, FMO, NLO, Fukui functions) and antibacterial activity studies on 2-amino-4-(4-nitrophenyl)-5,6-dihydrobenzo[h]quinoline-3-carbonitrile. J. Mol. Struct. 2019, 1178, 450-457.
https://doi.org/10.1016/j.molstruc.2018.10.001
[40]. Cortesi, L.; Rugo, H. S.; Jackisch, C. An overview of PARP inhibitors for the treatment of breast cancer. Target. Oncol. 2021, 16, 255-282.
https://doi.org/10.1007/s11523-021-00796-4
[41]. Griguolo, G.; Dieci, M. V.; Guarneri, V.; Conte, P. Olaparib for the treatment of breast cancer. Expert Rev. Anticancer Ther. 2018, 18, 519-530.
https://doi.org/10.1080/14737140.2018.1458613
[42]. Litton, J. K.; Rugo, H. S.; Ettl, J.; Hurvitz, S. A.; Gonçalves, A.; Lee, K.-H.; Fehrenbacher, L.; Yerushalmi, R.; Mina, L. A.; Martin, M.; Roché, H.; Im, Y.-H.; Quek, R. G. W.; Markova, D.; Tudor, I. C.; Hannah, A. L.; Eiermann, W.; Blum, J. L. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N. Engl. J. Med. 2018, 379, 753-763.
https://doi.org/10.1056/NEJMoa1802905
Supporting information
The Supplementary Material for this article can be found online at: Supplementary files
How to cite
The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item
DOI Link: https://doi.org/10.5155/eurjchem.13.4.440-450.2303

















European Journal of Chemistry 2022, 13(4), 440-450 | doi: https://doi.org/10.5155/eurjchem.13.4.440-450.2303 | Get rights and content
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Authors

This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).
© Copyright 2010 - 2023 • Atlanta Publishing House LLC • All Right Reserved.
The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.
Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.