European Journal of Chemistry 2022, 13(3), 351-357 | doi: https://doi.org/10.5155/eurjchem.13.3.351-357.2310 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

A new hydrazide functionalized Schiff’s base derivative: Insights into crystallography, Hirshfeld surface, and energy framework analysis


Vivek Prakash Malviya (1) orcid , Archisman Dutta (2,*) orcid

(1) Geological Survey of India, Northern Region, Lucknow-226024, India
(2) Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
(*) Corresponding Author

Received: 18 Jul 2022 | Revised: 04 Aug 2022 | Accepted: 20 Aug 2022 | Published: 30 Sep 2022 | Issue Date: September 2022

Abstract


A new hydrazide functionalized Schiff’s base derivative, N'-(3,4-dichlorobenzylidene)-4-hydroxybenzohydrazide (I), has been synthesized using a solvent-assisted mechano-chemical grinding strategy and structurally characterized using elemental analysis, 1H NMR and crystallographic studies. The single crystal X-ray diffraction study depicts that molecule is puckered with two aromatic rings lying out-of-plane in near anti-configuration across the C=N bond. The weak interactions involved in supramolecular framework formation are Cl···O, Cl···Cl, Cl···H, Cl···N, C···H, and O···H contacts. The intermolecular O···H interaction being stronger than other dispersive interactions such as halogen bonding, interlocks the molecules in a 2D sheet-type packing. All the structure directing interactions involved in developing crystal architecture are addressed with Hirshfeld surface analysis and fingerprint plots. The energy framework analysis shows visualization of 3D topology of short contacts related to molecular packing of compound I which further clarifies the predominance of both Coulombic and dispersive energies in developing supramolecular architecture.


Announcements


Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.

1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization or a DFT study between September 15, 2023 and October 31, 2023 (Voucher code: FALL2023).

2. A 50% discount will be applied to the article processing fee for submissions made between September 15, 2023 and October 31, 2023 by authors who have at least one publication in the European Journal of Chemistry (Voucher code: AUTHOR-3-2023).

3. Young writers will not be charged for the article processing fee between September 15, 2023 and October 31, 2023 (Voucher code: YOUNG2023).


Editor-in-Chief
European Journal of Chemistry

Keywords


Schiff’s base; Crystal structure; Hydrogen bonding; Energy frameworks; Non-covalent interaction; Hirshfeld surface analysis

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.13.3.351-357.2310

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 543 times | icon graph PDF Article downloaded 240 times


Citations

/


[1]. Emmanuel Israel Edache, Adamu Uzairu, Paul Andrew Mamza, Gideon Adamu Shallangwa, Mohammad Azam, Kim Min
Methimazole and propylthiouracil design as a drug for anti-graves' disease: Structural studies, Hirshfeld surface analysis, DFT calculations, molecular docking, molecular dynamics simulations, and design as a drug for anti-graves' disease
Journal of Molecular Structure  1289, 135913, 2023
DOI: 10.1016/j.molstruc.2023.135913
/


References


[1]. Desiraju, G. R.; Vittal, J. J.; Ramanan, A. Crystal Engineering: A Textbook; World Scientific Publishing: Singapore, Singapore, 2011.
https://doi.org/10.1142/8060

[2]. He, J.; Wang, J.; Xu, Q.; Wu, X.; Dutta, A.; Kumar, A.; Muddassir, M.; Alowais, A.; Abduh, N. A. Y. Syntheses and crystal structures of new dinuclear lanthanide complexes based on 3-(4-hydroxyphenyl) propanoic acid: Hirshfeld surface analyses and photoluminescence sensing. New J Chem 2019, 43, 13499-13508.
https://doi.org/10.1039/C9NJ02213A

[3]. Dutta, A.; Pan, Y.; Liu, J.-Q.; Kumar, A. Multicomponent isoreticular metal-organic frameworks: Principles, current status and challenges. Coord. Chem. Rev. 2021, 445, 214074.
https://doi.org/10.1016/j.ccr.2021.214074

[4]. Bauzá, A.; Seth, S. K.; Frontera, A. Tetrel bonding interactions at work: Impact on tin and lead coordination compounds. Coord. Chem. Rev. 2019, 384, 107-125.
https://doi.org/10.1016/j.ccr.2019.01.003

[5]. Krishna, G. R.; Devarapalli, R.; Lal, G.; Reddy, C. M. Mechanically flexible organic crystals achieved by introducing weak interactions in structure: Supramolecular shape synthons. J. Am. Chem. Soc. 2016, 138, 13561-13567.
https://doi.org/10.1021/jacs.6b05118

[6]. Desiraju, G. R. Supramolecular synthons in crystal engineering-A new organic synthesis. Angew. Chem. Int. Ed. Engl. 1995, 34, 2311-2327.
https://doi.org/10.1002/anie.199523111

[7]. Diyali, N.; Chettri, M.; De, A.; Biswas, B. Synthesis, crystal structure, and antidiabetic property of hydrazine functionalized Schiff base: 1,2-Di(benzylidene)hydrazine. Eur. J. Chem. 2022, 13, 234-240.
https://doi.org/10.5155/eurjchem.13.2.234-240.2265

[8]. Corey, E. J.; Cheng, X.-M. The logic of chemical synthesis; Wiley-Interscience: New York, 2009.

[9]. Dutta, A.; Mondal, S.; Singh, P. K.; Ray, B. Single crystal investigation, Hirshfeld surface and interaction energy framework analyses of structure-directing interactions within two isomorphous Schiff's base multicomponent salts. J. Mol. Struct. 2022, 1264, 133224.
https://doi.org/10.1016/j.molstruc.2022.133224

[10]. Dutta, A.; Singh, A.; Wang, X.; Kumar, A.; Liu, J. Luminescent sensing of nitroaromatics by crystalline porous materials. CrystEngComm 2020, 22, 7736-7781.
https://doi.org/10.1039/D0CE01087A

[11]. Desiraju, G. R. Crystal engineering: From molecule to crystal. J. Am. Chem. Soc. 2013, 135, 9952-9967.
https://doi.org/10.1021/ja403264c

[12]. Saha, S.; Mishra, M. K.; Reddy, C. M.; Desiraju, G. R. From molecules to interactions to crystal engineering: Mechanical properties of organic solids. Acc. Chem. Res. 2018, 51, 2957-2967.
https://doi.org/10.1021/acs.accounts.8b00425

[13]. Supramolecular assemblies based on electrostatic interactions; Aboudzadeh, M. A.; Frontera, A., Eds.; 1st ed.; Springer International Publishing: Cham, Switzerland, 2022.

[14]. Mahmoudi, G.; Masoudiasl, A.; Babashkina, M. G.; Frontera, A.; Doert, T.; White, J. M.; Zangrando, E.; Zubkov, F. I.; Safin, D. A. On the importance of π-hole spodium bonding in tricoordinated HgII complexes. Dalton Trans. 2020, 49, 17547-17551.
https://doi.org/10.1039/D0DT03938A

[15]. Boldyreva, E. Mechanochemistry of inorganic and organic systems: what is similar, what is different? Chem. Soc. Rev. 2013, 42, 7719-7738.
https://doi.org/10.1039/c3cs60052a

[16]. Desiraju, G. R. Crystal engineering: A holistic view. Angew. Chem. Int. Ed Engl. 2007, 46, 8342-8356.
https://doi.org/10.1002/anie.200700534

[17]. Green approaches in medicinal chemistry for sustainable drug design; Banik, B. K., Ed.; Elsevier Science Publishing: Philadelphia, PA, 2020.

[18]. Mahmoudi, G.; Abedi, M.; Lawrence, S. E.; Zangrando, E.; Babashkina, M. G.; Klein, A.; Frontera, A.; Safin, D. A. Tetrel bonding and other non-covalent interactions assisted supramolecular aggregation in a new Pb(II) complex of an isonicotinohydrazide. Molecules 2020, 25, 4056.
https://doi.org/10.3390/molecules25184056

[19]. CrysAlisPRO, Oxford Diffraction /Agilent Technologies UK Ltd, Yarnton, England.

[20]. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339-341.
https://doi.org/10.1107/S0021889808042726

[21]. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112-122.
https://doi.org/10.1107/S0108767307043930

[22]. Barbour, L. J. X-Seed 4: updates to a program for small-molecule supramolecular crystallography. J. Appl. Crystallogr. 2020, 53, 1141-1146.
https://doi.org/10.1107/S1600576720007438

[23]. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3-8.
https://doi.org/10.1107/S2053229614024218

[24]. Spackman, M. A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19-32.
https://doi.org/10.1039/B818330A

[25]. Mackenzie, C. F.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ 2017, 4, 575-587.
https://doi.org/10.1107/S205225251700848X

[26]. Spackman, P. R.; Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006-1011.
https://doi.org/10.1107/S1600576721002910

[27]. Jayatilaka, D.; Grimwood, D. J. Tonto: A FORTRAN based object-oriented system for quantum chemistry and crystallography. In Lecture Notes in Computer Science; Springer Berlin Heidelberg: Berlin, Heidelberg, 2003; pp. 142-151.
https://doi.org/10.1007/3-540-44864-0_15

[28]. Frontera, A.; Bauzá, A. On the importance of σ-hole interactions in crystal structures. Crystals (Basel) 2021, 11, 1205.
https://doi.org/10.3390/cryst11101205

[29]. Dutta, A.; Trivedi, M.; Alarifi, A.; Kumar, A.; Muddassir, M. A new 1D coordination polymer of triphenyl lead hydrosulfide: Synthesis and insights into crystal architecture and Hirshfeld surface analyses. J. Mol. Struct. 2020, 1207, 127801.
https://doi.org/10.1016/j.molstruc.2020.127801

[30]. Yuan, F.; Zhang, R.; Qiao, C.-F.; Luo, X.-X.; Zhou, C.-S.; Wang, J.; Yang, Q.; Sakiyama, H.; Muddassir, M.; Dutta, A. Series of Ln-metal organic frameworks: Photocatalytic performance and Hirshfeld surface analyses. J. Mol. Struct. 2022, 1251, 131956.
https://doi.org/10.1016/j.molstruc.2021.131956


Supporting information


The Supplementary Material for this article can be found online at: Supplementary files

How to cite


Malviya, V.; Dutta, A. Eur. J. Chem. 2022, 13(3), 351-357. doi:10.5155/eurjchem.13.3.351-357.2310
Malviya, V.; Dutta, A. A new hydrazide functionalized Schiff’s base derivative: Insights into crystallography, Hirshfeld surface, and energy framework analysis. Eur. J. Chem. 2022, 13(3), 351-357. doi:10.5155/eurjchem.13.3.351-357.2310
Malviya, V., & Dutta, A. (2022). A new hydrazide functionalized Schiff’s base derivative: Insights into crystallography, Hirshfeld surface, and energy framework analysis. European Journal of Chemistry, 13(3), 351-357. doi:10.5155/eurjchem.13.3.351-357.2310
Malviya, Vivek, & Archisman Dutta. "A new hydrazide functionalized Schiff’s base derivative: Insights into crystallography, Hirshfeld surface, and energy framework analysis." European Journal of Chemistry [Online], 13.3 (2022): 351-357. Web. 10 Dec. 2023
Malviya, Vivek, AND Dutta, Archisman. "A new hydrazide functionalized Schiff’s base derivative: Insights into crystallography, Hirshfeld surface, and energy framework analysis" European Journal of Chemistry [Online], Volume 13 Number 3 (30 September 2022)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.13.3.351-357.2310


CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2022, 13(3), 351-357 | doi: https://doi.org/10.5155/eurjchem.13.3.351-357.2310 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2023  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.