European Journal of Chemistry

Antioxidant and antimicrobial activities of four medicinal plants from Algeria

Crossmark


Main Article Content

Yuva Bellik
Nasreddine Mekhoukh

Abstract

Medicinal plants are used in folk medicine to cure several human diseases. This work was designed to evaluate the antioxidant and antimicrobial activities of different extracts of Globularia alypum, Dittrichia viscosa, Juniperus oxycedrus, and Retama sphaerocarpa. The total phenolic content (TPC), the total flavonoid content (TFC), and the condensed tannin content (CTC) were determined spectrophotometrically. The antioxidant activity was tested using TAC, DPPH and reducing power assays. The agar diffusion method was used to determine antimicrobial activity against four bacteria (Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa) and one fungus (Candida albicans). J. oxycedrus acetone extract showed the highest extraction yield (35.56±0.45%), TPC (504.96±14.82 mg GAE/g DE) and TFC (43.91±0.87 mg QE/g DE). The same extract exhibited the highest TAC (350.67±6.05 mg GAE/g DE) and was the most effective against the DPPH free radical (IC50 = 0.21±0.01 mg/mL). In contrast, the J. oxycedrus methanol extract showed the highest reducing power (A0.5 = 0.39 ± 0.09 mg/mL). All extracts tested showed antibacterial and anticandidal activities at different concentrations. The best antimicrobial effect was also observed with the acetone extract of J. oxycedrus against P. aeruginosa (26.77±0.06 mm), B. cereus (17.16±0.08 mm), E. coli (15.84±0.04 mm), and C. albicans (21.36±0.11 mm), while the ethanol extract of D. viscosa was the most active against S. aureus (24.54±0.03 mm). The results of this study provide a scientific basis for the traditional use of these local plants and demonstrate their potential as sources of natural antioxidant and antimicrobial bioactive compounds.


icon graph This Abstract was viewed 575 times | icon graph Article PDF downloaded 192 times

How to Cite
(1)
Bellik, Y.; Mekhoukh, N. Antioxidant and Antimicrobial Activities of Four Medicinal Plants from Algeria. Eur. J. Chem. 2023, 14, 121-128.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Gurib-Fakim, A. Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol. Aspects Med. 2006, 27, 1-93.
https://doi.org/10.1016/j.mam.2005.07.008

[2]. Newman, D. J.; Cragg, G. M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770-803.
https://doi.org/10.1021/acs.jnatprod.9b01285

[3]. Michel, J.; Abd Rani, N. Z.; Husain, K. A review on the potential use of medicinal plants from Asteraceae and Lamiaceae plant family in cardiovascular diseases. Front. Pharmacol. 2020, 11, 852.
https://doi.org/10.3389/fphar.2020.00852

[4]. Bellik, Y.; Selles, S. M. A. In vitro synergistic antioxidant activity of honey-Mentha spicata combination. J. Food Meas. Charact. 2017, 11, 111-118.
https://doi.org/10.1007/s11694-016-9377-1

[5]. Fabricant, D. S.; Farnsworth, N. R. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect. 2001, 109, 69-75.
https://doi.org/10.1289/ehp.01109s169

[6]. Kim, Y. S.; Young, M. R.; Bobe, G.; Colburn, N. H.; Milner, J. A. Bioactive food components, inflammatory targets, and cancer prevention. Cancer Prev. Res. (Phila.) 2009, 2, 200-208.
https://doi.org/10.1158/1940-6207.CAPR-08-0141

[7]. Salehi, B.; Azzini, E.; Zucca, P.; Maria Varoni, E.; V. Anil Kumar, N.; Dini, L.; Panzarini, E.; Rajkovic, J.; Valere Tsouh Fokou, P.; Peluso, I.; Prakash Mishra, A.; Nigam, M.; El Rayess, Y.; El Beyrouthy, M.; N. Setzer, W.; Polito, L.; Iriti, M.; Sureda, A.; Magdalena Quetglas-Llabrés, M.; Martorell, M.; Martins, N.; Sharifi-Rad, M.; M. Estevinho, L.; Sharifi-Rad, J. Plant-derived bioactives and oxidative stress-related disorders: A key trend towards healthy aging and longevity promotion. Appl. Sci. (Basel) 2020, 10, 947.
https://doi.org/10.3390/app10030947

[8]. Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; Abete, P. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757-772.
https://doi.org/10.2147/CIA.S158513

[9]. Antimicrobial Resistance Collaborators Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022, 399, 629-655.

[10]. Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004, 74, 2157-2184.
https://doi.org/10.1016/j.lfs.2003.09.047

[11]. Mohamed, T.; Souiy, Z.; Achour, L.; Hamden, K. Anti-obesity, anti-hyperglycaemic, anti-antipyretic and analgesic activities of Globularia alypum extracts. Arch. Physiol. Biochem. 2022, 128, 1453-1460.
https://doi.org/10.1080/13813455.2020.1773865

[12]. Adams, R. P. The leaf essential oils and chemotaxonomy of Juniperus sect. Juniperus. Biochem. Syst. Ecol. 1998, 26, 637-645.
https://doi.org/10.1016/S0305-1978(98)00020-9

[13]. Vilar, L.; Caudullo, G.; de Rigo, D. Juniperus oxycedrus in Europe: distribution, habitat, usage and threats. In: San-Miguel- Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds.), European Atlas of Forest Tree Species., Publ. Off. EU, Luxembourg, pp. e013abb+. https://ies-ows.jrc.ec.europa.eu/efdac/download/Atlas/pdf/Juniperus_oxycedrus.pdf (accessed January 1, 2023).

[14]. Swanston-Flatt, S. K.; Day, C.; Bailey, C. J.; Flatt, P. R. Traditional plant treatments for diabetes. Studies in normal and streptozotocin diabetic mice. Diabetologia 1990, 33, 462-464.
https://doi.org/10.1007/BF00405106

[15]. Grauso, L.; Cesarano, G.; Zotti, M.; Ranesi, M.; Sun, W.; Bonanomi, G.; Lanzotti, V. Exploring Dittrichia viscosa (L.) Greuter phytochemical diversity to explain its antimicrobial, nematicidal and insecticidal activity. Phytochem. Rev. 2020, 19, 659-689.
https://doi.org/10.1007/s11101-019-09607-1

[16]. Guerrouj, K.; Ruíz-Díez, B.; Chahboune, R.; Ramírez-Bahena, M.-H.; Abdelmoumen, H.; Quiñones, M. A.; El Idrissi, M. M.; Velázquez, E.; Fernández-Pascual, M.; Bedmar, E. J.; Peix, A. Definition of a novel symbiovar (sv. retamae) within Bradyrhizobium retamae sp. nov., nodulating Retama sphaerocarpa and Retama monosperma. Syst. Appl. Microbiol. 2013, 36, 218-223.
https://doi.org/10.1016/j.syapm.2013.03.001

[17]. Villar-Salvador, P.; Valladares, F.; Domínguez-Lerena, S.; Ruiz-Díez, B.; Fernández-Pascual, M.; Delgado, A.; Peñuelas, J. L. Functional traits related to seedling performance in the Mediterranean leguminous shrub Retama sphaerocarpa: Insights from a provenance, fertilization, and rhizobial inoculation study. Environ. Exp. Bot. 2008, 64, 145-154.
https://doi.org/10.1016/j.envexpbot.2008.04.005

[18]. León-González, A. J.; Navarro, I.; Acero, N.; Muñoz Mingarro, D.; Martín-Cordero, C. Genus Retama: a review on traditional uses, phytochemistry, and pharmacological activities. Phytochem. Rev. 2018, 17, 701-731.
https://doi.org/10.1007/s11101-018-9555-3

[19]. Singleton, V. L.; Rossi, J. A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144-158.

[20]. Jain, D. P.; Pancholi, S. S.; Patel, R. Synergistic antioxidant activity of green tea with some herbs. J. Adv. Pharm. Technol. Res. 2011, 2, 177-183.
https://doi.org/10.4103/2231-4040.85538

[21]. Oyedemi, S. O.; Afolayan, A. J. In vitro and in vivo Antioxidant Activity of Aqueous Leaves Extract of Leonotis leonurus (L.) R. Br. Int. J. Pharmacol. 2011, 7, 248-256.
https://doi.org/10.3923/ijp.2011.248.256

[22]. Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337-341.
https://doi.org/10.1006/abio.1999.4019

[23]. Burits, M.; Bucar, F. Antioxidant activity of Nigella sativa essential oil. Phytother. Res. 2000, 14, 323-328.
https://doi.org/10.1002/1099-1573(200008)14:5<323::AID-PTR621>3.0.CO;2-Q

[24]. Oyaizu, M. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307-315.
https://doi.org/10.5264/eiyogakuzashi.44.307

[25]. Daoud, A.; Malika, D.; Bakari, S.; Hfaiedh, N.; Mnafgui, K.; Kadri, A.; Gharsallah, N. Assessment of polyphenol composition, antioxidant and antimicrobial properties of various extracts of Date Palm Pollen (DPP) from two Tunisian cultivars. Arab. J. Chem. 2019, 12, 3075-3086.
https://doi.org/10.1016/j.arabjc.2015.07.014

[26]. Min; B. R; Pinchak; W. E; Merkel; R; Walker; S; Tomita; G; R. C Comparative antimicrobial activity of tannin extracts from perennial plants on mastitis pathogens. Sci. Res. Essays 2008, 3, 066-073.

[27]. Salama, H. M. H.; Marraiki, N. Antimicrobial activity and phytochemical analyses of Polygonum aviculare L. (Polygonaceae), naturally growing in Egypt. Saudi J. Biol. Sci. 2010, 17, 57-63.
https://doi.org/10.1016/j.sjbs.2009.12.009

[28]. Nester, E. W.; Nester, M. T.; Evans Roberts, C.; Anderson, D. G. Microbiology: A Human Perspective; 7th ed.; McGraw Hill Higher Education: Maidenhead, England, 2012.

[29]. Bakhouche, I.; Aliat, T.; Boubellouta, T.; Gali, L.; Şen, A.; Bellik, Y. Phenolic contents and in vitro antioxidant, anti-tyrosinase, and anti-inflammatory effects of leaves and roots extracts of the halophyte Limonium delicatulum. S. Afr. J. Bot. 2021, 139, 42-49.
https://doi.org/10.1016/j.sajb.2021.01.030

[30]. Chaouche, T. M.; Haddouchi, F.; Atik-Bekara, F.; Ksouri, R.; Azzi, R.; Boucherit, Z.; Tefiani, C.; Larbat, R. Antioxidant, Haemolytic Activities and HPLC-DAD-ESI-MSn Characterization of Phenolic Compounds from Root Bark of Juniperus Oxycedrus Subsp. Oxycedrus. Ind. Crops Prod. 2015, 64, 182-187.
https://doi.org/10.1016/j.indcrop.2014.10.051

[31]. Živić, N.; Milošević, S.; Dekić, V.; Dekić, B.; Ristić, N.; Ristić, M.; Sretić, L. Phytochemical and antioxidant screening of some extracts of Juniperus communis L. and Juniperus oxycedrus L. Czech J. Food Sci. 2019, 37, 351-358.
https://doi.org/10.17221/28/2019-CJFS

[32]. Stalikas, C. D. Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci. 2007, 30, 3268-3295.
https://doi.org/10.1002/jssc.200700261

[33]. Do, Q. D.; Angkawijaya, A. E.; Tran-Nguyen, P. L.; Huynh, L. H.; Soetaredjo, F. E.; Ismadji, S.; Ju, Y.-H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 2014, 22, 296-302.
https://doi.org/10.1016/j.jfda.2013.11.001

[34]. Taviano, M. F.; Marino, A.; Trovato, A.; Bellinghieri, V.; La Barbera, T. M.; Güvenç, A.; Hürkul, M. M.; Pasquale, R. D.; Miceli, N. Antioxidant and antimicrobial activities of branches extracts of five Juniperus species from Turkey. Pharm. Biol. 2011, 49, 1014-1022.
https://doi.org/10.3109/13880209.2011.560161

[35]. Gökbulut, A.; Özhana, O.; Satılmiş, B.; Batçioğlu, K.; Günal, S.; Şarer, E. Antioxidant and antimicrobial activities, and phenolic compounds of selected Inula species from turkey. Nat. Prod. Commun. 2013, 8, 1934578X1300800.
https://doi.org/10.1177/1934578X1300800417

[36]. Rhimi, W.; Hlel, R.; Ben Salem, I.; Boulila, A.; Rejeb, A.; Saidi, M. Dittrichia viscosa L. ethanolic extract based ointment with antiradical, antioxidant, and healing wound activities. Biomed Res. Int. 2019, 2019, 4081253.
https://doi.org/10.1155/2019/4081253

[37]. Liu, S.; Lin, J.; Wang, C.; Chen, H.; Yang, D. Antioxidant properties of various solvent extracts from lychee (Litchi chinenesis Sonn.) flowers. Food Chem. 2009, 114, 577-581.
https://doi.org/10.1016/j.foodchem.2008.09.088

[38]. Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191-203.
https://doi.org/10.1016/j.foodchem.2005.07.042

[39]. Yousfi, F.; Abrigach, F.; Petrovic, J. D.; Sokovic, M.; Ramdani, M. Phytochemical screening and evaluation of the antioxidant and antibacterial potential of Zingiber officinale extracts. S. Afr. J. Bot. 2021, 142, 433-440.
https://doi.org/10.1016/j.sajb.2021.07.010

[40]. Hinneburg, I.; Damien Dorman, H. J.; Hiltunen, R. Antioxidant activities of extracts from selected culinary herbs and spices. Food Chem. 2006, 97, 122-129.
https://doi.org/10.1016/j.foodchem.2005.03.028

[41]. Manel, M.; Nouzha, H.; Rim, M.; Imane, M.; Sana, A.; Yasmine, O.; Ammar, A. Antibacterial and antioxidant activity of Juniperus thurifera L. leaf extracts growing in East of Algeria. Vet. World 2018, 11, 373-378.
https://doi.org/10.14202/vetworld.2018.373-378

[42]. Hayet, E.; Maha, M.; Samia, A.; Mata, M.; Gros, P.; Raida, H.; Ali, M. M.; Mohamed, A. S.; Gutmann, L.; Mighri, Z.; Mahjoub, A. Antimicrobial, antioxidant, and antiviral activities of Retama raetam (Forssk.) Webb flowers growing in Tunisia. World J. Microbiol. Biotechnol. 2008, 24, 2933-2940.
https://doi.org/10.1007/s11274-008-9835-y

[43]. Khlifi, D.; Hamdi, M.; Hayouni, A. E.; Cazaux, S.; Souchard, J. P.; Couderc, F.; Bouajila, J. Global chemical composition and antioxidant and anti-tuberculosis activities of various extracts of Globularia alypum L. (globulariaceae) leaves. Molecules 2011, 16, 10592-10603.
https://doi.org/10.3390/molecules161210592

[44]. Jayaprakasha, G. K.; Patil, B. S. In vitro evaluation of the antioxidant activities in fruit extracts from citron and blood orange. Food Chem. 2007, 101, 410-418.
https://doi.org/10.1016/j.foodchem.2005.12.038

[45]. Akiyama, H. Antibacterial action of several tannins against Staphylococcus aureus. J. Antimicrob. Chemother. 2001, 48, 487-491.
https://doi.org/10.1093/jac/48.4.487

[46]. Funatogawa, K.; Hayashi, S.; Shimomura, H.; Yoshida, T.; Hatano, T.; Ito, H.; Hirai, Y. Antibacterial activity of hydrolyzable tannins derived from medicinal plants againstHelicobacter pylori. Microbiol. Immunol. 2004, 48, 251-261.
https://doi.org/10.1111/j.1348-0421.2004.tb03521.x

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).